Skip to main content
Log in

Mechanism of the Reaction of Tris(trimethylsilyl)silane with Ozone

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Low-temperature (–90°C) ozonolysis of tris(trimethylsilyl)silane gave tris(trimethylsilyl)silanol and 1,1,1-trimethyl-2,2-bis(trimethylsiloxy)disilan-2-ol. The primary isotope effect in the reaction of tris(trimethylsilyl)silane with ozone at –90°C is equal to 5.5 and is consistent with the theoretical value calculated at the B3LYP/6-31+G(2d,p) level of theory assuming abstraction of H(D) from the Si–H(D) bond by ozone. Possible reaction mechanisms, namely radical, ionic, and ozone insertion into the Si–H bond, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Scheme

Similar content being viewed by others

REFERENCES

  1. Ouellette, R.J. and Marks, D.L., J. Organomet. Chem., 1968, vol. 11, p. 407. https://doi.org/10.1016/0022-328X(68)80064-6

    Article  CAS  Google Scholar 

  2. Corey, E.J., Mehrotra, M.M., and Khan, A.U., J. Am. Chem. Soc., 1986, vol. 108, no. 9, p. 2472. https://doi.org/10.1021/ja00269a070

    Article  CAS  PubMed  Google Scholar 

  3. Plesničar, B., Cerkovnik, J., Koller, J., and Kovač, F., J. Am. Chem. Soc., 1991, vol. 113, no. 13, p. 4946. https://doi.org/10.1021/ja00013a034

    Article  Google Scholar 

  4. Cerkovnik, J., Tuttle, T., Kraka, E., Lendero, N., Plesničar, B., and Cremer, D., J. Am. Chem. Soc., 2006, vol. 128, no. 12, p. 4090. https://doi.org/10.1021/ja058065v

    Article  CAS  PubMed  Google Scholar 

  5. Khalitova, L.R., Grabovskii, S.A., and Kabal’nova, N.N., High Energy Chem., 2019, vol. 53, no. 6, p. 435. https://doi.org/10.1134/S0018143919060109

    Article  CAS  Google Scholar 

  6. Koenig, M., Barrau, J., and Hamida, N.B., J. Organomet. Chem., 1988, vol. 356, no. 2, p. 133. https://doi.org/10.1016/0022-328X(88)83082-1

    Article  CAS  Google Scholar 

  7. Tarunin, B.I., Tarunina, V.N., and Kurskii, Yu.A., Zh. Obshch. Khim., 1988, vol. 58, no. 5, p. 1060.

    CAS  Google Scholar 

  8. Shereshovets, V.V., Khursan, S.L., Komissarov, V.D., and Tolstikov, G.A., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 105. https://doi.org/10.1070/RC2001v070n02ABEH000622

    Article  CAS  Google Scholar 

  9. Methoden der organische Chemie, Kropf, H., Ed., Stuttgart: Wiley, 1988, vol. E13, p. 971.

  10. Grabovskii, S.A., Kabal’nova, N.N., Shereshovets, V.V., and Chatgilialoglu, C., Organometallics, 2002, vol. 21, no. 17, p. 3506. https://doi.org/10.1021/om0200095

    Article  CAS  Google Scholar 

  11. Grabovskiy, S.A. and Kabal’nova, N.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 12, p. 2391. https://doi.org/10.1134/S1070363221120069

    Article  CAS  Google Scholar 

  12. Kraka, E., Cremer, D., Koller, J., and Plesničar, B., J. Am. Chem. Soc., 2002, vol. 124, no. 28, p. 8462. https://doi.org/10.1021/ja012553v

    Article  CAS  PubMed  Google Scholar 

  13. Plesničar, B., Cerkovnik, J., Tekavec, T., and Koller, J., J. Am. Chem. Soc., 1998, vol. 120, no. 31, p. 8005. https://doi.org/10.1021/ja981568z

    Article  Google Scholar 

  14. Derro, E.L., Sechler, T.D., Murray, C., and Lester, M.I.J., J. Phys. Chem. A, 2008, vol. 112, no. 39, p. 9269. https://doi.org/10.1021/jp801232a

    Article  CAS  PubMed  Google Scholar 

  15. Varner, M.E., Harding, M.E., Vázquez, J., Gauss, J., and Stanton, J.F., J. Phys. Chem. A, 2009, vol. 113, no. 42, p. 11238. https://doi.org/10.1021/jp907262s

    Article  CAS  PubMed  Google Scholar 

  16. Zaborovskiy, A.B., Lutsyk, D.S., Prystansky, R.E., Kopylets, V.I., Timokhin, V.I., and Chatgilialoglu, S., J. Organomet. Chem., 2004, vol. 689, p. 2912. https://doi.org/10.1016/j.jorganchem.2004.06.030

    Article  CAS  Google Scholar 

  17. Kanabus-Kaminska, J.M., Hawari, J.A., Griller, D., and Chatgilialoglu, C., J. Am. Chem. Soc., 1987, vol. 109, no. 17, p. 5267. https://doi.org/10.1021/ja00251a035

    Article  CAS  Google Scholar 

  18. Blackwell, J.H., Kumar, R., and Gaunt, M.J., J. Am. Chem. Soc., 2021, vol. 143, no. 3, p. 1598. https://doi.org/10.1021/jacs.0c12162

    Article  CAS  PubMed  Google Scholar 

  19. Chatgilialoglu, C., Guarini, A., Guerrini, A., and Seconi, G., J. Org. Chem., 1992, vol. 57, no. 8, p. 2207. https://doi.org/10.1021/jo00034a001

    Article  CAS  Google Scholar 

  20. Shereshovets, V.V., Galieva, F.A., Shafikov, N.Ya., Sadykov, R.A., Panasenko, A.A., and Komissarov, V.D., Bull. Acad. Sci. USSR, Div. Chem. Sci. 1982, vol. 31, p. 1050. https://doi.org/10.1007/BF00949969

  21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Wallingford CT: Gaussian, 2010.

  22. Zhao, Y. and Truhlar, D.G., Acc. Chem. Res., 2008, vol. 41, no. 2, p. 157. https://doi.org/10.1021/ar700111a

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  24. Alecu, I.M., Zheng, J., Zhao, Y., and Truhlar, D.G., J. Chem. Theor. Comput., 2010, vol. 6, no. 9, p. 2872. https://doi.org/10.1021/ct100326h

    Article  CAS  Google Scholar 

  25. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. B, 2009, vol. 113, no. 18, p. 6378. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  26. Wiest, O., Houk, K.N., Black, K.A., and Thomas, B., J. Am. Chem. Soc., 1995, vol. 117, no. 33, p. 8594. https://doi.org/10.1021/ja00138a015

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks S.L. Khursan and R.L. Safiullin (Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences) for helpful advices and fruitful discussion.

Funding

This study was performed in the framework of research schedule of the Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences (state registry no. 122031400201-0) using the equipment of the Chemistry joint center (Ufa Federal Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grabovskiy.

Ethics declarations

The author declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovskiy, S.A. Mechanism of the Reaction of Tris(trimethylsilyl)silane with Ozone. Russ J Gen Chem 92, 1443–1448 (2022). https://doi.org/10.1134/S1070363222080114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222080114

Keywords:

Navigation