Skip to main content
Log in

Solvent Molecules as Ligands in Coordination Compounds of Metals with Boron Cluster Anions and Their Derivatives (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This study summarizes the literature data on the synthesis and structure of coordination compounds of alkali and alkaline earth metals, a series of M(I), M(II) transition metals, and rare earth elements with solvent molecules and boron cluster anions and their derivatives as ligands. The considered group of compounds has been classified in view of the nature of the coordinating solvent molecules as well as the position of boron cluster anions and their derivatives in the inner coordination sphere of the metal or the outer sphere. It has been shown that boron cluster anions and their derivatives are coordinated by metal atoms along with the solvent molecules via the three-center two-electron bonds in the presence of the Pearson’s soft acid metals [copper(I), silver(II), and lead(II)], forming the coordination polyhedrons. The possibility of the formation of mixed-ligand complexes due to the completion of the metal coordination polyhedron with the BH groups of the boron cluster has been revealed for the nonclassical complex-forming metals during the thermal treatment of the aqua complexes or the complexes with alcohol molecules as ligands, [ML6][BnHn] (M = Ca, Mg, Co, and Ni).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.

Similar content being viewed by others

REFERENCES

  1. Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Oxford: Butterworth-Heinemann, 1997.

  2. Grimes, R.N., Carboranes, London: Academic Press, 2016, p. 1058. https://doi.org/10.1016/B978-0-12-801894-1.09989-3

  3. Boron Science: New Technologies and Applications, Hosmane, N.S., Ed., Boca Raton, Florida: CRC Press, 2012.

  4. Boron-Based Compounds: Potential and Emerging Applications in Medicine, Hey-Hawkins, E. and Viñas, C., Eds., Teixidor. Glasgow, UK: John Wiley & Sons Ltd., 2018, p. 470. https://doi.org/10.1002/9781119275602

  5. Sivaev, I.B. and Bregadze, V.I., Polyhedral Boron Hydrides in Use: Current Status and Perspectives, Hauppauge: Nova Science Publishers, 2009, p. 85.

  6. King, R.B., Chem. Rev., 2001, vol. 101, no. 5, p. 1119. https://doi.org/10.1021/cr000442t

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z. and King, R.B., Chem. Rev., 2005, vol. 105, no. 10, p. 3613. https://doi.org/10.1021/cr0300892

    Article  CAS  PubMed  Google Scholar 

  8. Zhizhin, K.Yu., Zhdanov, A.P., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2010, vol. 55, no. 14, p. 2089. https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  9. Sivaev, I.B., Prikaznov, A.V., and Naoufal, D., Coll. Czech. Chem. Commun., 2010, vol. 75, no. 11, p. 1149. https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  10. Sivaev, I.B., Russ. J. Inorg. Chem., 2019, vol. 64, no. 8, p. 955. https://doi.org/10.1134/S003602361908014X

    Article  CAS  Google Scholar 

  11. Klyukin, I.N., Selivanov, N.A., Bykov, A.Y., Zhdanov, A.P., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 10, p. 1547. https://doi.org/10.1134/S0036023620100113

    Article  CAS  Google Scholar 

  12. Nelyubin, A.V., Selivanov, N.A., Bykov, A.Y., Klyukin, I.N., Novikov, A.S., Zhdanov, A.P., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 6, p. 795. https://doi.org/10.1134/S0036023620060133

    Article  CAS  Google Scholar 

  13. Nelyubin, A.V., Klyukin, I.N., Zhdanov, A.P., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2019, vol. 64, no. 14, p. 1750. https://doi.org/10.1134/S0036023619140043

    Article  CAS  Google Scholar 

  14. Nelyubin, A.V., Klyukin, I.N., Zhdanov, A.P., Grigor’ev, M.S., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2019, vol. 64, no. 12, p. 1499. https://doi.org/10.1134/S003602361912012X

    Article  CAS  Google Scholar 

  15. Shmal’ko, A.V. and Sivaev, I.B., Russ. J. Inorg. Chem., 2019, vol. 64, no. 14, p. 1726. https://doi.org/10.1134/S0036023619140067

    Article  Google Scholar 

  16. Nelyubin, A.V., Klyukin, I.N., Zhdanov, A.P., Grigor’ev, M.S., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, p. 139. https://doi.org/10.1134/S0036023621020133

    Article  CAS  Google Scholar 

  17. Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Y., and Kuznetsov, N.T., Russ. J. Coord. Chem., 2021, vol. 47, no. 8, p. 519. https://doi.org/10.1134/S1070328421080017

    Article  CAS  Google Scholar 

  18. Malinina, E.A., Avdeeva, V.V., Goeva, L.V., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2010, vol. 55, no. 14, p. 2148. https://doi.org/10.1134/S0036023610140032

    Article  CAS  Google Scholar 

  19. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2017, vol. 62, no. 13, p. 1673. https://doi.org/10.1134/S0036023617130022

    Article  CAS  Google Scholar 

  20. Korolenko, S.E., Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2021, vol. 66, no. 9, p. 1350. https://doi.org/10.1134/S0036023621090047

    Article  CAS  Google Scholar 

  21. Sivaev, I.B., Russ. J. Inorg. Chem., 2021, vol. 66, no. 9, p. 1289. https://doi.org/10.1134/S0036023621090151

    Article  CAS  Google Scholar 

  22. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 3, p. 335. https://doi.org/10.1134/S003602362003002X

    Article  CAS  Google Scholar 

  23. Avdeeva, V.V., Polyakova, I.N., Vologzhanina, A.V., Malinina, E.A., Zhizhin, K.Yu., and Kuznetsov, N.T., Polyhedron, 2017, vol. 123, p. 396. https://doi.org/10.1016/j.poly.2016.12.009

    Article  CAS  Google Scholar 

  24. Avdeeva, V.V., Vologzhanina, A.V., Malinina, E.A., and Kuznetsov, N.T., Crystals., 2019, vol. 9, no. 7, p. 330. https://doi.org/10.3390/cryst9070330

    Article  CAS  Google Scholar 

  25. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Polyhedron, 2016, vol. 105, p. 205. https://doi.org/10.1016/j.poly.2015.11.049

    Article  CAS  Google Scholar 

  26. Avdeeva, V.V., Buzin, M.I., Malinina, E.A., Kuznetsov, N.T., and Vologzhanina, A.V., CrystEngComm., 2015, vol. 17, no. 46, p. 8870. https://doi.org/10.1039/c5ce00859j

    Article  CAS  Google Scholar 

  27. Avdeeva, V.V., Buzin, M.I., Dmitrienko, A.O., Dorovatovskii, P.V., Malinina, E.A., Kuznetsov, N.T., Voronova, E.D., Zubavichus, Y.V., and Vologzhanina, A.V., Chem. Eur. J., 2017, vol. 23, no. 66, p. 16819. https://doi.org/10.1002/chem.201703285

    Article  CAS  PubMed  Google Scholar 

  28. Malinina, E.A., Avdeeva, V.V., Korolenko, S.E., Nefedov, S.E., Goeva, L.V., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 9, p. 1343. https://doi.org/10.1134/S0036023620090119

    Article  CAS  Google Scholar 

  29. Kravchenko, E.A., Gippius, A.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 4, p. 546. https://doi.org/10.1134/S0036023620040105

    Article  Google Scholar 

  30. Kravchenko, E.A., Gippius, A.A., Vologzhanina, A.V., Avdeeva, V.V., Malinina, E.A., Ulitin, E.O., and Kuznetsov, N.T., Polyhedron, 2016, vol. 117, p. 561. https://doi.org/10.1016/j.poly.2016.06.016

    Article  CAS  Google Scholar 

  31. Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Y., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 4, p. 514. https://doi.org/10.1134/S0036023620040026

    Article  CAS  Google Scholar 

  32. Goeva, L.V., Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2018, vol. 63, no. 8, p. 1050. https://doi.org/10.1134/S0036023618080089

    Article  CAS  Google Scholar 

  33. Matveev, E.Y., Novikov, I.V., Kubasov, A.S., Retivov, V.M., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, p. 187. https://doi.org/10.1134/S0036023621020121

    Article  CAS  Google Scholar 

  34. Malinina, E.A., Korolenko, S.E., Zhdanov, A.P., Avdeeva, V.V., Privalov, V.I., and Kuznetsov, N.T., J. Cluster Sci., 2021, vol. 32, p. 755. https://doi.org/10.1007/s10876-020-01840-5

    Article  CAS  Google Scholar 

  35. Agafonov, A.V., Vinnitskii, D.M., Solntsev, K.A., Kuznetsov, N.T., Mikoyan, Z.N., and Ryurikov, V.F., Zh. Neorg. Khim., 1985, vol. 30, no. 2, p. 355.

    Google Scholar 

  36. Vinnitskii, D.M., Kuznetsov, I.Yu., Solntsev, K.A., and Kuznetsov, N.T., Zh. Neorg. Khim., 1987, vol. 32, no. 12, p. 3268.

    Google Scholar 

  37. Klimchuk, G.S. and Mustyasa, V.N., Abstract of Papers, IV All-Union Conf. on Hybrides Chemistry, Dushanbe., 1987, p. 44.

  38. Kuznetsov, N.T., Zemskova, L.A., and Goeva, L.V., Coord. Khim., 1981, vol. 7, no. 2, p. 232.

    CAS  Google Scholar 

  39. Zimmermann, L.W. and Schleid, Th., Z. Kristallogr., 2013, vol. 228, no. 10, p. 558. https://doi.org/10.1524/zkri.2013.1634

    Article  CAS  Google Scholar 

  40. Kuznetsov, N.T., Solntsev, K.A., and Klimchuk, G.S., Izv. AN SSSR. Neorg. Mater., 1978, vol. 14, no. 11, p. 2013.

    CAS  Google Scholar 

  41. Uspenskaya, S.M., Solntsev, K.A., and Kuznetsov, N.T., Zh. Strukt. Khim., 1975, vol. 16, no. 3, p. 482.

    CAS  Google Scholar 

  42. Solntsev, K.A., Kuznetsov, N.T., and Ponomarev, V.I., Dokl. AN SSSR, 1976, vol. 228, no. 4, p. 853.

    CAS  Google Scholar 

  43. Kuznetsov, N.T. and Klimchuk, G.S., Zh. Neorg. Khim., 1971, vol. 16, no. 5, p. 1218.

    CAS  Google Scholar 

  44. Solntsev, K.Α., Kuznetsov, N.T., and Ponomarev, V.I., Izv. AN SSSR. Neorg. Mater., 1976, vol. 12, no. 6, p. 1044.

    CAS  Google Scholar 

  45. Solntsev, Κ.Α., Kuznetsov, N.T., Rannev, Kh.V., and Zavodnik, V.E., Dokl. AN SSSR, 1977, vol. 232, no. 6, p. 1366.

    CAS  Google Scholar 

  46. Muetterties, E.L., Baltnis, J.H., Chia, Y.T., Knoth, W.N., and Miller, H.C., Inorg. Chem., 1964, vol. 3, no. 3, p. 444. https://doi.org/10.1021/ic50013a030

    Article  CAS  Google Scholar 

  47. Solntsev, K.A., Kuznetsov, N.T., and Rannev, N.V., Dokl. AN SSSR., 1973, vol. 221, no. 6, p. 1378.

    Google Scholar 

  48. Tiritiris, I. and Schleid, T., Z. anorg. allg. Chem., 2002, vol. 628, p. 1411. https://doi.org/10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-X

    Article  CAS  Google Scholar 

  49. Tiritiris, I. and Schleid, T., Z. anorg. allg. Chem., 2005, vol. 631, p. 1593. https://doi.org/10.1002/zaac.200500093

    Article  CAS  Google Scholar 

  50. Tiritiris, I. and Schleid, T., Z. anorg. allg. Chem., 2004, vol. 630, p. 541. https://doi.org/10.1002/zaac.200300416

    Article  CAS  Google Scholar 

  51. Tiritiris, I., Van, Ng.-D., and Schleid, T., Z. anorg. allg. Chem., 2004, vol. 630, p. 1763. https://doi.org/10.1002/zaac.200470138

    Article  Google Scholar 

  52. Van, Ng.-D., PhD Thesis, Stuttgart, 2009.

  53. Kuznetsov, N.T., Zemskova, L.Α., Alikhanova, Z.Μ., and Ippolitov, Ε.G., Zh. Neorg. Khim., 1981, vol. 26, no. 5, p. 1331.

    CAS  Google Scholar 

  54. Mikhailov, Yu.N., Kanishcheva A.S, Zemskova, L.A., Mistryukov, V.E., Kuznetsov, N.T., and Solntsev, K.A., Zh. Neorg. Khim., 1982, vol. 27, no. 9, p. 2343.

    CAS  Google Scholar 

  55. Kanaeva, O.A. and Kuznetsov, N.T., Trudy MITKhT, 1972, vol. 2, no. 2, p. 21.

    CAS  Google Scholar 

  56. Tiritiris, I. and Schleid, T., Z. anorg. allg. Chem., 2007, vol. 634, p. 317. https://doi.org/10.1002/zaac.200700399

    Article  CAS  Google Scholar 

  57. Jørgensen, M., Zhou, W., Wu, H., Udovic, T.J., Paskevicius, M., Černý, R., and Jensen, T.R., Inorg. Chem., 2021, vol. 60, no. 15, p. 10943. https://doi.org/10.1021/acs.inorgchem.1c00594

    Article  CAS  PubMed  Google Scholar 

  58. Tiritiris, I., Van, Ng.-D., and Schleid, T., Z. anorg. allg. Chem., 2011, vol. 637, p. 682. https://doi.org/10.1002/zaac.201000457

    Article  CAS  Google Scholar 

  59. Didelot, E., Sadikin, Y., Łodzian, Zb., and Černý, R., Solid State Sci., 2019, vol. 90, p. 86. https://doi.org/10.1016/j.solidstatesciences.2019.02.005

    Article  CAS  Google Scholar 

  60. Kleeberg, F.M. and Schleid, T., Z. Kristallogr., 2017, suppl. 37, p. 107.

  61. Bareiß, K. and Schleid, T., Z. Kristallogr., 2019, suppl. 39, p. 87.

  62. Kuznetsov, N.T., Zemskova, L.Α., and Ippolitov, Ε.G., Zh. Neorg. Khim., 1981, vol. 26, no. 7, p. 1862.

    CAS  Google Scholar 

  63. Malinina, E.A., Korolenko, S.E., Kubasov, A.S., Buzanov, G.A., Golubev, A.V., Goeva, L.V., Simonenko, N.P., Avdeeva, V.V., and Kuznetsov, N.T., J. Solid State Chem., 2021, vol. 302, p. 122413. https://doi.org/10.1016/j.jssc.2021.122413

    Article  CAS  Google Scholar 

  64. Kleeberg, F.M., Dinnebier, R.E., and Schleid, T., Inorg. Chim. Acta, 2017, vol. 467, p. 147. https://doi.org/10.1016/j.ica.2017.07.066

    Article  CAS  Google Scholar 

  65. Lacroix, M.R., Bukovsky, E.V., Lozinšek, M., Folsom, T.C., Newell, B.S., Liu, Y., Peryshkov, D.V., and Strauss, S.H., Inorg. Chem., 2018, vol. 57, no. 23, p. 14983. https://doi.org/10.1021/acs.inorgchem.8b02786

    Article  CAS  PubMed  Google Scholar 

  66. Didelot, E., Łodziana, Z., Murgia, F., and Černý, R., Crystals, 2019, vol. 9, no. 7, p. 372. https://doi.org/10.3390/cryst9070372

    Article  CAS  Google Scholar 

  67. Avdeeva, V.V., Polyakova, I.N., Goeva, L.V., Buzanov, G.A., Generalova, N.B., Malinina, E.A., Zhizhin, K.Y., Kuznetsov, N.T., and Vologzhanina, A.V., Russ. J. Inorg. Chem., 2016, vol. 61, no. 9, p. 1125. https://doi.org/10.1134/S0036023616090023

    Article  CAS  Google Scholar 

  68. Avdeeva, V.V., Polyakova, I.N., Goeva, L.V., Buzanov, G.A., Malinina, E.A., and Kuznetsov, N.T., Inorg. Chim. Acta, 2016, vol. 451, p. 129. https://doi.org/10.1016/j.ica.2016.07.016

    Article  CAS  Google Scholar 

  69. Malinina, E.A., Goeva, L.V., Buzanov, G.A., Avdeeva, V.V., Kuznetsov, N.T., and Retivov, V.M., Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, p. 126. https://doi.org/10.1134/S0036023620010118

    Article  CAS  Google Scholar 

  70. Malinina, E.A., Korolenko, S.E., Goeva, L.V., Buzanov, G.A., Avdeeva, V.V., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2018, vol. 63, no. 12, p. 1552. https://doi.org/10.1134/S0036023618120148

    Article  CAS  Google Scholar 

  71. Korolenko, S.E., Goeva, L.V., Kubasov, A.S., Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, no. 6, p. 846. https://doi.org/10.1134/S0036023620060091

    Article  CAS  Google Scholar 

  72. Avdeeva, V.V., Vologzhanina, A.V., Ugolkova, E.A., Minin, V.V., Malinina, E.A., and Kuznetsov, N.T., J. Solid State Chem., 2021, vol. 296, p. 121989. https://doi.org/10.1016/j.jssc.2021.121989

    Article  CAS  Google Scholar 

  73. Kuznetsov, N.T. and Zemskova, L.A., Zh. Neorg. Khim., 1982, vol. 27, no. 5, p. 1320

    CAS  Google Scholar 

  74. Korolenko, S.E., Zhuravlev, K.P., Tsaryuk, V.I., Kubasov, A.S., Avdeeva, V.V., Malinina, E.A., Burlov, A.S., Divaeva L.N, Zhizhin, K.Yu., and Kuznetsov, N.T., J. Lumin., 2021, vol. 237, p. 118156. https://doi.org/10.1016/j.jlumin.2021.118156

    Article  CAS  Google Scholar 

  75. Korolenko, S.E., Kubasov, A.S., Goeva, L.V., Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Inorg. Chim. Acta, 2021, vol. 520, p. 120315. https://doi.org/10.1016/j.ica.2021.120315

    Article  CAS  Google Scholar 

  76. Korolenko, S.E., Kubasov, A.S., Goeva, L.V., Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Inorg. Chim. Acta, 2021, vol. 527, p. 120587. https://doi.org/10.1016/j.ica.2021.120587

    Article  CAS  Google Scholar 

  77. Milutka, M.S., Burlov, A.S., Vlasenko, V.G., Koschienko, Yu.V., Makarovs, N.I., Metelitsa, A.V., Korshuniva, E.V., Trigub, A.L., Zubenko, A.A., and Klimenko, A.I., Russ. J. Gen. Chem., 2021, vol. 91, p. 1706. https://doi.org/10.1134/S1070363221090140

    Article  Google Scholar 

  78. Zakharova, I.A., Kuznetsov, N.Т., and Gaft, Yu.L., Inorg. Chim. Acta, 1978, vol. 28, p. 271. https://doi.org/10.1016/S0020-1693(00)87446-0

    Article  CAS  Google Scholar 

  79. Musgrave, R.A., Hailes, R.L.N., Schäfer, A., Russell, A.D., Gates, P.J., and Manners, I., Dalton Trans., 2018, vol. 47, p. 2759. https://doi.org/10.1039/C7DT04593J

    Article  CAS  PubMed  Google Scholar 

  80. Peryshkov, D.V. and Strauss, S.H., Inorg. Chem., 2017, vol. 56, no. 7, p. 4072. https://doi.org/10.1021/acs.inorgchem.7b00051

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, Y., Liu, J., and Duttwyler, S., Eur. J. Inorg. Chem., 2015, p. 5158. https://doi.org/10.1002/ejic.201501009

  82. Malinina, E.A., Zhizhin, K.Yu., Mustyatsa, V.N., Goeva, L.V., Polyakova, I.N., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2003, vol. 48, no. 7, p. 993.

    Google Scholar 

  83. Avdeeva, V.V., Malinina, E.A., Churakov, A.V., Polyakova, I.N., and Kuznetsov, N.T., Polyhedron, 2019, vol. 169, p. 144. https://doi.org/10.1016/j.poly.2019.05.018

    Article  CAS  Google Scholar 

  84. Malinina, E.A., Drozdova, V.V., Mustyatsa, V.N., Goeva, L.V., Polyakova, I.N., Votinova, N.A., Zhizhin, K.Yu., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2006, vol. 51, no. 11, p. 1723. https://doi.org/10.1134/S0036023606110076

    Article  Google Scholar 

  85. Polyakova, I.N., Malinina, E.A., Drozdova, V.V., and Kuznetsov, N.T., Crystallography Reports, 2008, vol. 53, no. 2, p. 253. https://doi.org/10.1007/s11445-008-2013-3

    Article  CAS  Google Scholar 

  86. Volkov, O., Hu, Ch., and Paetzold, P., Z. anorg. allg. Chem., 2005, vol. 631, p. 1107. https://doi.org/10.1002/zaac.200400518

    Article  CAS  Google Scholar 

  87. Ivanov, S.V., Ivanova, S.I., Miller, S.M., Anderson, O.P., Solntsev, K.A., and Strauss, S.H., Inorg. Chem., 1996, vol. 35, no. 24, p. 6914. https://doi.org/10.1021/ic961043c

    Article  CAS  PubMed  Google Scholar 

  88. Malischewski, M., Peryshkov, D.V., Bukovsky, E.V., Seppelt, K., and Strauss, S.H., Inorg. Chem., 2016, vol. 55, no. 23, p. 12254. https://doi.org/10.1021/acs.inorgchem.6b01980

    Article  CAS  PubMed  Google Scholar 

  89. Avdeeva, V.V., Buzanov, G.A., Malinina, E.A., Kuznetsov, N.T., and Vologzhanina, A.V., Crystals, 2020, vol. 10, p. 389. https://doi.org/10.3390/cryst10050389

    Article  CAS  Google Scholar 

  90. Saleh, M., Powell, D.R., and Wehmschulte, R.J., Inorg. Chem., 2016, vol. 55, no. 20, p. 10617. https://doi.org/10.1021/acs.inorgchem.6b01867

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed within the State Assignment to the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Avdeeva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeeva, V.V., Korolenko, S.E., Malinina, E.A. et al. Solvent Molecules as Ligands in Coordination Compounds of Metals with Boron Cluster Anions and Their Derivatives (A Review). Russ J Gen Chem 92, 393–417 (2022). https://doi.org/10.1134/S1070363222030070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222030070

Keywords:

Navigation