Skip to main content
Log in

Glycine and Histidine in Regulation of Free-Radical Dephosphorylation of Glycerol Phosphate in the Presence of Cu2+(Fe2+) Ions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of Gly and His on homolytic fragmentation of glycerol phosphate with the cleavage of the phosphoester bond, induced by the Cu2+(Fe2+)–H2O2 redox systems or γ-radiation, has been studied. It has been shown that under the conditions of Cu2+-mediated generation of HO˙, Gly and His enhance the fragmentation at the amino acid : Cu2+ molar ratio between 1.6 : 1 and 3 : 1, whereas the increase in the molar ratio to ≥5 : 1 inhibit the fragmentation. The Cu(Gly)2 complex in the presence of H2O2 has induces the glycerol phosphate decomposition, depending on the concentration. In the presence of Fe2+, Gly has not significantly affected the fragmentation, whereas His has accelerated the process by more than 2 times with the increase in its concentration in the system. In the case of the radiation-induced fragmentation, Gly has not affected the process, whereas His has acted as the inhibitor, depending on its concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A., Oxid. Med. Cell. Longev., 2017, vol. 2017, p. 8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valko, M., Jomova, K.,·Rhodes, C.J., Kuca, K., and Musílek, K., Arch. Toxicol., 2016, vol. 90, p. 1. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  3. Pisoschi, A.M. and Pop, A., Eur. J. Med. Chem., 2015, vol. 97, p. 55. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  4. Forman, H.J. and Zhang, H., Nat. Rev. Drug Discov., 2021, vol. 20, p. 689. https://doi.org/10.1038/s41573-021-00233-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., and Abete, P., Clin. Interv. Aging., 2018, vol. 13, p. 757. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yurkova, I.L., Russ. Chem. Rev., 2012, vol. 81, no. 2, p. 175. https://doi.org/10.1070/RC2012v081n02ABEH004205

    Article  CAS  Google Scholar 

  7. Wang, X., Devaiah, S.P., Zhang, W., and Welti, R., Prog. Lipid Res., 2006, vol. 45, p. 250. https://doi.org/10.1016/j.plipres.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Yurkova, I.L., Stuckert, F., Kisel, M.A., Shadyro, O.I., Arnhold, J., and Dominik, H., Аrch. Biochem. Biophys., 2008, vol. 480, no. 1, p. 17. https://doi.org/10.1016/j.abb.2008.09.007

    Article  CAS  Google Scholar 

  9. Yurkova, I., Arnhold, J., and Huster, D., Chem. Phys. Lipids, 2009, vol. 158, no. 1, p. 16. https://doi.org/10.1016/j.chemphyslip.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Yurkova, I.L., Arnhold, J., Fitzl, G., and Huster, D., Chem. Phys. Lipids, 2011, vol. 164, p. 393. https://doi.org/10.1016/j.chemphyslip.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  11. Schuchmann, M.N., Scholes, M.L., Zegota, H., and von Sonntag, C., Int. J. Radiat. Biol., 1995, vol. 68, no. 2, p. 121. https://doi.org/10.1080/09553009514551021

    Article  CAS  PubMed  Google Scholar 

  12. Kisel, M.A., Shadyro, O.I., and Yurkova, I.L., High Energy Chem., 1997, vol. 31, no. 2, p. 80.

    CAS  Google Scholar 

  13. Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., and Wu, G., Amino Acids, 2013, vol. 45, no. 3, p. 463. https://doi.org/10.1007/s00726-013-1493-1

    Article  CAS  PubMed  Google Scholar 

  14. Razak, M.A., Begum, P.S., Viswanath, B., and Rajagopal, S., Oxid. Med. Cell Longev., 2017, vol. 2017 (1716701). https://doi.org/10.1155/2017/1716701

  15. Heidari, R., Ghanbarinejad, V., Mohammadi, H., Ahmadi, A., Ommati, M.M., Abdoli, N., Aghaei, F., Esfandiari, A., Azarpira, N., and Niknahad, H., Biomed. Pharmacother., 2018, vol. 97, p. 1086. https://doi.org/10.1016/j.biopha.2017.10.166

    Article  CAS  PubMed  Google Scholar 

  16. Senthilkumar, R., Sengottuvelan, M., and Nalini, N., Cell Biochem. Funct., 2004, vol. 22, p. 123. https://doi.org/10.1002/cbf.1062

    Article  CAS  PubMed  Google Scholar 

  17. Moura, A.P., Grings, M., Marcowich, G.F., Bumbel, A.P., Parmeggiani, B., de Moura Alvorcem, L., Wajner, M., and Leipnitz, G., Mol. Cell Biochem., 2014, vol. 395, nos. 1–2, p. 125. https://doi.org/10.1007/s11010

    Article  CAS  PubMed  Google Scholar 

  18. Leipnitz, G., Solano, A.F., Seminotti, B., Amaral, A.U., Fernandes, C.G., Beskow, A.P., Dutra Filho, C.S., and Wajner, M., Cell Mol. Neurobiol., 2009, vol. 29, no. 2, p. 253. https://doi.org/10.1007/s10571-008-9318-6

    Article  CAS  PubMed  Google Scholar 

  19. Vera-Aviles, M., Vantana, E., Kardinasari, E., Koh, N.L., and Latunde-Dada, G.O., Pharmaceuticals (Basel), 2018, vol. 11, no. 4, p. 111. https://doi.org/10.3390/ph11040111

    Article  CAS  Google Scholar 

  20. Holeček, M., Nutrients, 2020, vol. 12, no. 3, p. 848. https://doi.org/10.3390/nu12030848

    Article  CAS  PubMed Central  Google Scholar 

  21. Nair, N.G., Perry, G., Smith, M.A., and Reddy, V.P., J. Alzheimers Dis., 2010, vol. 20, p. 57. https://doi.org/10.3233/JAD-2010-1346

    Article  CAS  PubMed  Google Scholar 

  22. Wade, A.M. and Tucker, H.N., J. Nutr. Biochem., 1998, vol. 9, p. 308. https://doi.org/10.1016/S0955-2863(98)00022-9

    Article  CAS  Google Scholar 

  23. Babizhayev, M.A., Seguin, M.C., Gueyne, J., Evstigneeva, R.P., Ageyeva, E.A., and Zheltukhina, G.A., Biochem J., 1994, vol. 304, p. 509. https://doi.org/10.1042/bj3040509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erickson, M.C. and Hultin, H.O., Arch. Biochem. Biophys., 1992, vol. 292, p. 427. https://doi.org/10.1016/0003-9861(92)90012-l

    Article  CAS  PubMed  Google Scholar 

  25. Tachon, P., Deflandre, A., and Giacomoni, P.U., Carcinogenesis, 1994, vol. 15, p. 1621. https://doi.org/10.1093/carcin/15.8.1621

    Article  CAS  PubMed  Google Scholar 

  26. Cantoni, O. and Giacomoni, P., Gen Pharmacol., 1997, vol. 29, p. 513. https://doi.org/10.1016/s0306-3623(96)00363-1

    Article  CAS  PubMed  Google Scholar 

  27. Mozdzan, M., Szemraj, J., Rysz, J., and Nowak, D., Basic Clin. Pharmacol. Toxicol., 2005, vol. 96, no. 5, p. 352. https://doi.org/10.1111/j.1742-7843.2005.pto_03.x

    Article  CAS  PubMed  Google Scholar 

  28. Senapati, U., Mandal, B., and Bankura, K.P., Rasayan J. Chem., 2017, vol. 10, no. 3, p. 981. https://doi.org/10.7324/RJC.2017.1031798

    Article  CAS  Google Scholar 

  29. Murphy, J.M., All Dissertations 2201, 2018.

  30. Betterton, E.A., Crit. Rev. Env. Sci. Technol., 2003, vol. 33, p. 423. https://doi.org/10.1080/10643380390245002

    Article  CAS  Google Scholar 

  31. Wardman, P., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 4, p. 1637. https://doi.org/10.1063/1.555843

    Article  CAS  Google Scholar 

  32. Lin, T. and Wu, C., J. Catalysis, 2005, vol. 232, no. 1, p. 117. https://doi.org/10.1016/j.jcat.2005.01.038

    Article  CAS  Google Scholar 

  33. Skounas, S., Methenitis, C., Pneumatikakis, G., and Morcellet, M., Bioinorg. Chem. Appl., 2010, vol. 2010, p. 643120. https://doi.org/10.1155/2010/643120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milach, O.A., Mel’sitova, I.V., and Yurkova, I.L., Russ. J. Gen. Chem., 2020, vol. 90, no. 6, p. 987. https://doi.org/10.1134/S1070363220060080

    Article  CAS  Google Scholar 

  35. Stadtman, E.R. and Levine, R.L., Amino Acids, 2003, vol. 25, nos. 3–4, p. 207. https://doi.org/10.1007/s00726-003-0011-2

    Article  CAS  Google Scholar 

  36. Goldstein, S. and Czapski, G., J. Am. Chem. Soc., 1986, vol. 108, p. 2244. https://doi.org/10.1021/ja00269a020

    Article  CAS  PubMed  Google Scholar 

  37. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 2, p. 676. https://doi.org/10.1063/1.555805

    Article  Google Scholar 

  38. Hoyau, S. and Ohanessian, G., J. Am. Chem. Soc., 1997, vol. 119, no. 8. P., 2016. https://doi.org/10.1021/ja963432b

  39. Li, R., Wen, Y., Lin, G., Meng, C., He, P., and Wang, F., Metabolites, 2020, vol. 10, no. 1, p. 11. https://doi.org/10.3390/metabo10010011

    Article  CAS  Google Scholar 

  40. Fazary, A.E. and Ramadan, A.M., Complex Metals, 2014, vol. 1, p. 139. https://doi.org/10.1080/2164232X.2014.941115

    Article  CAS  Google Scholar 

  41. Marino, T., Toscano, M., Russo, N., and Grand, A., J. Phys. Chem. (B), 2006, vol. 110, p. 24666. https://doi.org/10.1021/jp0645972

    Article  CAS  Google Scholar 

  42. Sundberg, R.J. and Martin, R.B., Chem. Rev., 1974, vol. 74, no. 4, p. 471. https://doi.org/10.1021/cr60290a003

    Article  CAS  Google Scholar 

  43. Velez, S., Nair, N.G., and Reddy, V.P., Colloids Surf. (B), 2008, vol. 66, p. 291. https://doi.org/10.1016/j.colsurfb.2008.06.012

    Article  CAS  Google Scholar 

  44. Troshanin, N.V., Bychkova, T.I., Neklyudov, V.V., and Klimovitskii, A.E., Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, p. 52. https://doi.org/10.1134/S0036023620010179

    Article  CAS  Google Scholar 

  45. Schubert, J. and Wilmer, J.W., Free Rad. Biol. Med., 1991, vol. 11, p. 545. https://doi.org/10.1016/0891-5849(91)90135-p

    Article  CAS  PubMed  Google Scholar 

  46. Shah V. Verma, P., Stopka, P., Gabriel, J., Baldrian, P., and Nerud, F., Appl. Catal. (B), 2003, vol. 46, p. 287. https://doi.org/10.1016/s0926-3373(03)00220-0

    Article  Google Scholar 

  47. Gin, F.J. and Morales, F., Anal. Biochem., 1977, vol. 77, no. 1, p. 10.

    Article  Google Scholar 

  48. Page, S.E., Arnold W.A, and McNeill, K., J. Environ. Monit., 2010, vol. 9, no. 12, p. 1658. https://doi.org/10.1039/c0em00160k

    Article  CAS  Google Scholar 

  49. Kadyrova, R.G., Kabirov, G.F., and Mullakhmetov, R.R., Uchen. Zap. KGAVM im. N.E. Baumana, 2013, vol. 213, no. 1, p. 109.

    Google Scholar 

Download references

Funding

This study was performed in the scope of the State Programs of Research in Republic of Belarus “Chemical Processes, Reagents, and Technologies, Bioregulators, and Bioorganic Chemistry” (project no. 2.2.03.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Yurkova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milach, O.A., Naidenov, V.E., Karankevich, E.G. et al. Glycine and Histidine in Regulation of Free-Radical Dephosphorylation of Glycerol Phosphate in the Presence of Cu2+(Fe2+) Ions. Russ J Gen Chem 92, 241–249 (2022). https://doi.org/10.1134/S107036322202013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322202013X

Keywords:

Navigation