Skip to main content
Log in

2,2′-Bis[(chloromethyl)diorganylsilyloxy]azobenzenes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Previously unknown 2,2′-bis(silyloxy)azobenzenes containing a carbon functional group on the silicon atom have been synthesized. The reaction of 2,2′-dihydroxyazobenzene with chlorosilanes R1R2(ClCH2)SiCl (R1 = R2 = Me; R1 = OBu-t, R2 = Me) in the presence of triethylamine led to the formation of the corresponding 2,2′-bis[(chloromethyl)diorganylsilyloxy]azobenzenes which underwent intramolecular cyclization on prolonged storage at room temperature to produce more stable cyclic azobenzenes with an N=N→Si transannular dative bond, 6,6-dimethyldibenzo- and 6-(chloromethyl)-6-methyldibenzo[d,h][1,3,6,7,2]dioxadiazasilonines. A probable mechanism of the process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Scheme

Similar content being viewed by others

REFERENCES

  1. Walther, M., Kipke, W., Schultzke, S., Ghosh, S., Staubitz, A., Synthesis, 2021, vol. 53, no. 7, p. 1213. https://doi.org/10.1055/s-0040-1705999

    Article  CAS  Google Scholar 

  2. Xu, G., Li, S., Liu, C., and Wu, S., Chem. Asian J., 2020, vol. 15, no. 5, p. 547. https://doi.org/10.1002/asia.201901655

    Article  CAS  PubMed  Google Scholar 

  3. Babalhavaeji, A., Samanta, S., Beharry, A.A., and Woolley, G.A., Acc. Chem. Res., 2015, vol. 48, no. 10, p. 2662. https://doi.org/10.1021/acs.accounts.5b00270

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, H.-B., Zhang, S., Qi, J., Liang, X.-J., an Yoon, J., Adv. Mater., 2021, vol. 33, no. 26, article ID 2007290. https://doi.org/10.1002/adma.202007290

  5. Mart, R.J. and Allemann, R.K., Chem. Commun., 2016, vol. 52, no. 83, p. 12262. https://doi.org/10.1039/c6cc04004g

    Article  CAS  Google Scholar 

  6. Fuchter, M.J., J. Med. Chem., 2020, vol. 63, no. 20, p. 11436. https://doi.org/10.1021/acs.jmedchem.0c00629

    Article  CAS  PubMed  Google Scholar 

  7. Merino, E. and Ribagorda, M., Beilstein J. Org. Chem., 2012, vol. 8, p. 1071. https://doi.org/10.3762/bjoc.8.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bleger, D., Schwarz, J., Brouwer, A.M., and Hecht, S., J. Am. Chem. Soc., 2012, vol. 134, no. 51, p. 20597. https://doi.org/10.1021/ja310323y

    Article  CAS  PubMed  Google Scholar 

  9. Samanta, S., Beharry, A.A., Sadovski, O., McCormick, T.M., Babalhavaeji, A., Tropepe, V., and Woolley, G.A., J. Am. Chem. Soc., 2013, vol. 135, no. 26, p. 9777. https://doi.org/10.1021/ja402220t

    Article  CAS  PubMed  Google Scholar 

  10. Knie, C., Utecht, M., Zhao, F., Kulla, H., Kovalenko, S., Brouwer, A.M., Saalfrank, P., Hecht, S., and Bléger, D., Chem. Eur. J., 2014, vol. 20, no. 50, p. 16492. https://doi.org/10.1002/chem.201404649

    Article  CAS  PubMed  Google Scholar 

  11. Bushuyev, O.S., Tomberg, A., Friscic, T., and Barrett, C.J., J. Am. Chem. Soc., 2013, vol. 135, no. 34, p. 12556. https://doi.org/10.1021/ja4063019

    Article  CAS  PubMed  Google Scholar 

  12. Leistner, A.-L., Kirchner, S., Karcher, J., Bantle, T., Schulte, M.L., Godtel, P., Fengler, C., and Pianowski, Z.L., Chem. Eur. J., 2021, vol. 27, no. 31, p. 8094. https://doi.org/10.1002/chem.202005486

    Article  CAS  PubMed  Google Scholar 

  13. Hermann, D., Schwartz, H.A., Werker, M., Schaniel, D., and Ruschewitz, U., Chem. Eur. J., 2019, vol. 25, no. 14, p. 3606. https://doi.org/10.1002/chem.201805391

    Article  CAS  PubMed  Google Scholar 

  14. Rodl, M., Kerschbaumer, S., Kopacka, H., Blaser, L., Purtscher, F.R.S., Huppertz, H., Hofer, T.S., and Schwartz, H.A., RSC Adv., 2021, vol. 11, p. 3917. https://doi.org/10.1039/d0ra10500g

    Article  CAS  Google Scholar 

  15. Lameijer, L.N., Budzak, S., Simeth, N.A., Hansen, M.J., Feringa, B.L., Jacquemin, D., and Szymanski, W., Angew. Chem., Int. Ed., 2020, vol. 59, no. 48, p. 21663. https://doi.org/10.1002/anie.202008700

    Article  CAS  Google Scholar 

  16. Ahmed, Z., Siiskonen, A., Virkki, M., and Priimagi, A., Chem. Commun., 2017, vol. 53, no. 93, p. 12520. https://doi.org/10.1039/c7cc07308a

    Article  CAS  Google Scholar 

  17. Samanta, S., McCormick, T.M., Schmidt, S.K., Seferos, D.S., and Woolley, G.A., Chem. Commun., 2013. vol. 49, no. 87, p. 10314. https://doi.org/10.1039/c3cc46045b

    Article  CAS  Google Scholar 

  18. Liu, N. and Brinker, C.J., Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, Zhao, Y. and Ikeda, T., Eds., Hoboken, NJ: Wiley, 2009, p. 457. https://doi.org/10.1002/9780470439098.ch13

  19. Meenu, K., Bag, D.S, Lagarkha, R., Tomar, R., and Gupta, A.K., Curr. Organocatal., 2019, vol. 6, no. 3, p. 193. https://doi.org/10.2174/2213337206666190415124549

    Article  CAS  Google Scholar 

  20. Innocenzia, P. and Lebeau, B., J. Mater. Chem., 2005, vol. 15, nos. 35–36, p. 3821. https://doi.org/10.1039/b506028a

    Article  CAS  Google Scholar 

  21. Guo, S. and Shimojima, A., Organic–Inorganic Hybrid Materials with Photomechanical Functions in Mechanically Responsive Materials for Soft Robotics, Koshima, H., Ed., Weinheim: Wiley-VCH, 2020, p. 257. https://doi.org/10.1002/9783527822201.ch10

  22. Cui, Y., Wang, M., Chen, L., and Qian, G., Dyes Pigm., 2005, vol. 65, no. 1, p. 61. https://doi.org/10.1016/j.dyepig.2004.07.002

    Article  CAS  Google Scholar 

  23. Moller, S., Pliquett, U., and Hoffmann, C., RSC Adv., 2012, vol. 2, no. 11, p. 4792. https://doi.org/10.1039/c2ra20151h

    Article  CAS  Google Scholar 

  24. Soldatenko, A.S., Sterkhova, I.V., and Lazareva, N.F., J. Organomet. Chem., 2019, vol. 903, article ID 120997. https://doi.org/10.1016/j.jorganchem.2019.120997

  25. Soldatenko, A.S. and Lazareva, N.F., Russ. Chem. Bull., Int. Ed., 2021, vol. 70, no. 1, p. 158. https://doi.org/10.1007/s11172-021-3071-0

    Article  CAS  Google Scholar 

  26. Wong, C.Y., McDonald, R., and Cavell, R.G., Inorg. Chem., 1996, vol. 35, no. 2, p. 325. https://doi.org/10.1021/ic9507530

    Article  CAS  PubMed  Google Scholar 

  27. D’yakov, V.M., Makarov, A.F., Kir’yanova, A.N., Chernyshev, A.E., and Bochkarev, V.N., J. Gen. Chem. USSR, 1988, vol. 58, no. 3, p. 480.

    Google Scholar 

  28. Corey, J.Y., Corey, E.R., Chang, V.H.T., Hauser, M.A., Leiber, M.A., Rebel, T.E., and Riva, M.E., Organometallics, 1984, vol. 3, no. 7, p. 1051. https://doi.org/10.1021/om00085a015

    Article  CAS  Google Scholar 

  29. Allen, J.M., Aprahamian, S.L., Sans, E.A., and Shechter, H., J. Org. Chem., 2002, vol. 67, no. 11, p. 3561. https://doi.org/10.1021/jo010471j

    Article  CAS  PubMed  Google Scholar 

  30. Ide, T., Ozama, Y., and Matsui, K., J. Non-Cryst. Solids, 2011, vol. 357, no. 1, p. 100. https://doi.org/10.1016/j.jnoncrysol.2010.09.009

    Article  CAS  Google Scholar 

  31. Hu, D.-q., Wang, W.-j., Wang, R.-r., Yang, B., and Yu, B., Chin. J. Chem. Phys., 2015, vol. 28, no. 5, p. 645. https://doi.org/10.1063/1674-0068/28/cjcp1502073

    Article  CAS  Google Scholar 

  32. Yu, M. and Fu, X., J. Am. Chem. Soc., 2011, vol. 133, no. 40, p. 15926. https://doi.org/10.1021/ja207468n

    Article  CAS  PubMed  Google Scholar 

  33. Doane, T., Cheng, Y., Sodhi, N., and Burda, C., J. Phys. Chem. A, 2014, vol. 118, no. 45, p. 10587. https://doi.org/10.1021/jp505656e

    Article  CAS  PubMed  Google Scholar 

  34. Maiti, B., Manna, A.K., McCleese, C., Doane, T.L., Chakrapani, S., Burda, C., and Dunietz, B.D., J. Phys. Chem. A, 2016, vol. 120, no. 39, p. 7634. https://doi.org/10.1021/acs.jpca.6b05610

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi, M., Harada, M., Takakura, H., Ando, K., Goto, Y., Tsuneda, T., Ogawa, M., and Taketsugu, T., ChemPlusChem, 2020, vol. 85, no. 9, p. 1959. https://doi.org/10.1002/cplu.202000338

    Article  CAS  PubMed  Google Scholar 

  36. Bohme, U. and Jahnigen, S., Acta Crystallogr., Sect. C, 2008, vol. 64, no. 7, p. o364. https://doi.org/10.1107/S0108270108016193

  37. Lazareva, N.F. and Nikonov, A.Yu., Monatsh. Chem., 2015, vol. 146, no. 6, p. 983. https://doi.org/10.1007/s00706-014-1366-7

    Article  CAS  Google Scholar 

  38. Spectral Database for Organic Compounds SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

  39. Monin, E.A., Bykova, I.A., Nosova, V.M., Kisin, A.V., Philippov, A.M., and Storozhenko, P.A., Inorg. Chim. Acta, 2020, vol. 507, article ID 119555. https://doi.org/10.1016/j.ica.2020.119555

  40. Luo, Y.-R., Comprehensive Handbook of Chemical Bond Energies, Boca Raton: CRC Press, 2007. https://doi.org/10.1201/9781420007282

  41. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Amsterdam: Elsevier, 2009, 6th ed.

Download references

ACKNOWLEDGMENTS

The spectral and analytical data were obtained using the facilities of the Baikal joint center, Siberian Branch, Russian Academy of Sciences.

Funding

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 19-03-00143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Lazareva.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

To the 100th Anniversary of M.G. Voronkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, A.S., Lazareva, N.F. 2,2′-Bis[(chloromethyl)diorganylsilyloxy]azobenzenes. Russ J Gen Chem 91, 2416–2423 (2021). https://doi.org/10.1134/S1070363221120094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221120094

Keywords:

Navigation