Skip to main content
Log in

Thermal Decomposition of Aluminium Hydride Complexes with Trimethylamine and N-Heterocyclic Carbene

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The decomposition of aluminum hydride complexes with trimethylamine and N-heterocyclic carbene—1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene was studied by a static tensimetric method with a membrane null-manometer. The AlH3·NMe3 complex passes into vapor in the form of monomeric molecules and in unsaturated vapor slowly decomposes at 70‒80°С into solid aluminum, gaseous trimethylamine, and hydrogen. The decomposition is accompanied by an induction period, the duration of which decreases as temperature increases. The AlH3 complex with carbene slowly decomposes at 170‒200°С with a rate practically independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Graetz, J., Reilly, J.J., Yartys, V.A., Maehlen, J.P., Bulychev, B.M., Antonov, V.E., Tarasov, B.P., and Gabis, I.E., J. Alloys Compd., 2011, vol. 509, p. 517. https://doi.org/10.1016/j.jallcom.2010.11.115

    Article  CAS  Google Scholar 

  2. Hwang, S.-J., Bowman, Jr. R.C., Graetz, J., Reilly, J.J., Langley, W., and Jensen, C.M., J. Alloys Compd., 2007, vols. 446–447, p. 290. https://doi.org/10.1016/j.jallcom.2007.01.115

    Article  CAS  Google Scholar 

  3. Brinks, H.W., Istad-Lem, A., and Hauback, B.C., J. Phys. Chem. B, 2006, vol. 110, p. 25833. https://doi.org/10.1021/jp0630774

    Article  CAS  PubMed  Google Scholar 

  4. Brinks, H.W., Langley, W., Jensen, C.M., Graetz, J., Reilly, J.J., and Hauback, B.C., J. Alloys Compd., 2007, vol. 433., p. 180. https://doi.org/10.1016/j.jallcom.2006.06.072

    Article  CAS  Google Scholar 

  5. Yartys, V.A., Denys, R.V., Maehlen, J.P., Frommen, C., Fichtner, M., Bulychev, B.M., and Emerich, H., Inorg. Chem., 2007, vol. 46, p. 1051. https://doi.org/10.1021/ic0617487

    Article  CAS  PubMed  Google Scholar 

  6. Graetz, J. and Reilly, J.J., J. Phys. Chem. B, 2005, vol. 109, p. 22181. https://doi.org/10.1021/jp0546960

    Article  CAS  PubMed  Google Scholar 

  7. Tarasov, V.P., Muravlev, Y.B., Bakum, S.I., and Novikov, A.V., Doklady. Phys. Chem., 2003, vol. 393, p. 353. https://doi.org/10.1023/B:DOPC.0000010342.35835.cc

    Article  CAS  Google Scholar 

  8. Jones, C., Koutsantonis, G.A., and Raston, C.L., Polyhedron, 1993, vol. 12, no. 12, p. 1829. https://doi.org/10.1016/S0277-5387(00)81421-7

    Article  CAS  Google Scholar 

  9. Roesky, H.W., Inorg. Chem., 2004, vol. 43, no. 23, p. 7284. https://doi.org/10.1021/ic0400641

    Article  CAS  PubMed  Google Scholar 

  10. Phillips, N.A., White, A.J.P., and Crimmin, M.R., Adv. Synth. Catal., 2019, vol. 361, no. 14, p. 3351. https://doi.org/10.1002/adsc.201900234

    Article  CAS  Google Scholar 

  11. Pineda, L.W., Jancik, V., Starke, K., Oswald, R.B., and Roesky, H.W., Angew. Chem. Int. Ed., 2006, vol. 45, no. 16, p. 2602. https://doi.org/10.1002/ange.200504337

    Article  CAS  Google Scholar 

  12. Hensen, K., Lemke, A., Stumpf, T., Bolte, M., Fleischer, H., Pulham, C., Gould, R.O., and Harris, S., Inorg. Chem., 1999, vol. 38, no. 21, p. 4700. https://doi.org/10.1021/ic9905695

    Article  CAS  PubMed  Google Scholar 

  13. Blakeney, K.J. and Winter, C.H., Chem. Mater., 2018, vol. 30, no. 6, p. 1844. https://doi.org/10.1021/acs.chemmater.8b00445

    Article  CAS  Google Scholar 

  14. Gladfelter, W.L., Boyd, D.C., and Jensen, K.F., Chem. Mater., 1989, vol. 1, no. 3, p. 339. https://doi.org/10.1021/cm00003a013

    Article  CAS  Google Scholar 

  15. Glass, J.A, Hwang, S.-D., Datta, S., Robertson, B., and Spencer, J.T., J. Phys. Chem. Solids, 1996, vol. 57, no. 5, p. 563. https://doi.org/10.1016/0022-3697(96)80011-4

    Article  CAS  Google Scholar 

  16. Mastryukov, V.S., Golubinskii, A.V., and Vilkov, L.V., J. Struct. Chem., 1979, vol. 20, p. 788. https://doi.org/10.1007/bf00746779

    Article  Google Scholar 

  17. Humphries, T.D., Sirsch, P., Decken, A., and McGrady, G.S., J. Mol. Struct., 2009, vol. 923, p. 13. https://doi.org/10.1016/j.molstruc.2008.12.022

    Article  CAS  Google Scholar 

  18. Wee, A.T.S., Murrell, A.J., Singh, N.K., O’Hare, D., and Foord, J.S., Chem. Commun., 1990, vol. 1, p. 11. https://doi.org/10.1039/C39900000011

    Article  Google Scholar 

  19. Duffy, S., Nolan, P.F., Rushworth, S.A., Leese, A.B., and Jones, A.C., Adv. Mat. Optics Electronics, 1997, vol. 7, no. 5, p. 233. https://doi.org/10.1002/(SICI)1099-0712(199709)7:5<233::AID-AMO311>3.0.CO;2-I

    Article  CAS  Google Scholar 

  20. Heitsch, C.W., Nature, 1962, vol. 195, no. 4845, p. 995. https://doi.org/10.1038/195995b0

    Article  CAS  Google Scholar 

  21. Nechiporenko, G.N., Petukhova, L.B., and Rozenberg, A.S., Russ. Chem. Bull., 1975, vol. 24, no. 8, p. 1584. https://doi.org/10.1007/BF01099999

    Article  Google Scholar 

  22. Arduengo III, A.J., Rasika Dias, H.V., Calabrese, J.C., and Davidson, F., J. Am. Chem. Soc., 1992, vol. 114, p. 9724. https://doi.org/10.1021/ja00050a098

    Article  Google Scholar 

  23. Baker, R.J., Davies, A.J., Jones, C., and Kloth, M., J. Organomet. Chem., 2002, vol. 656, p. 203. https://doi.org/10.1016/S0022-328X(02)01592-9

    Article  CAS  Google Scholar 

  24. Schneider, H., Hock, A., Bertermann, R., and Radius, U., Chem. Eur. J., 2017, vol. 23, p. 12387. https://doi.org/10.1002/chem.201702166

    Article  CAS  PubMed  Google Scholar 

  25. Abdalla, J.A.B., Riddlestone, I.M., Turner, J., Kaufman, P.A., Tirfoin, R., Phillips, N., and Aldridge, S., Chem. Eur. J., 2014, vol. 20, p. 17624. https://doi.org/10.1002/chem.201405018

    Article  CAS  PubMed  Google Scholar 

  26. Suvorov, A.V., Termodinamicheskaya khimiya paroobraznogo sostoyaniya (Thermodynamic Chemistry of the Vapor State), Leningrad: Khimiya, 1970.

  27. Doinikov, D.A., Kazakov, I.V., Krasnova, I.S., and Timoshkin, A.Y., Russ. J. Phys. Chem., 2017, vol. 91, no. 8, p. 1603. https://doi.org/10.1134/S0036024417080088

    Article  CAS  Google Scholar 

  28. Davydova, E.I., Doinikov, D.A., Kazakov, I.V., Krasnova, I.S., Sevast’yanova, T.N., Suvorov, A.V., and Timoshkin, A.Y., Russ. J. Gen. Chem., 2019, vol. 89, p. 1069. https://doi.org/10.1134/S1070363219060021

    Article  CAS  Google Scholar 

  29. Wong, B.M., Lacina, D., Nielsen, I.M.B., Graetz, J., and Allendorf, M.D., J. Phys. Chem. C, 2011, vol. 115, p. 7778. https://doi.org/10.1021/jp112258s

    Article  CAS  Google Scholar 

  30. Marsh, C.M.B. and Schaefer III, H.F., J. Phys. Chem., 1995, vol. 99, p. 195. https://doi.org/10.1021/j100001a033

    Article  CAS  Google Scholar 

  31. Bahlawane, N., Kohse-Höinghaus, K., Premkumar, P.A., and Lenoble, D., Chem. Sci., 2012, vol. 3, no. 4, p. 929. https://doi.org/10.1039/C1SC00522G

    Article  CAS  Google Scholar 

  32. Khawam, A. and Flanagan, D.R., J. Phys. Chem. B, 2006, vol. 110, no. 35, p. 17315. https://doi.org/10.1021/jp062746a

    Article  CAS  PubMed  Google Scholar 

  33. Avrami, M., J. Chem. Phys., 1939, vol. 7, no. 12, p. 1103. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  34. Avrami, M., J. Chem. Phys.,1940, vol. 8, no. 2, p. 212. https://doi.org/10.1063/1.1750631

  35. Avrami, M., J. Chem. Phys., 1941, vol. 9, no. 2, p. 177. https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  36. Polanyi, M. and Wigner, E., Z. Phys. Chem. A, 1928, vol. 139, no. 1, p. 439. https://doi.org/10.1515/zpch-1928-13930

    Article  CAS  Google Scholar 

  37. Shannon, R.D., Trans. Faraday Soc., 1964, vol. 60, p. 190. https://doi.org/10.1039/tf9646001902

    Article  Google Scholar 

  38. Bantreil, X. and Nolan, S.P., Nature Protocols., 2011, vol. 6, p. 69. https://doi.org/10.1038/nprot.2010.177

    Article  CAS  PubMed  Google Scholar 

  39. Al-Rafia, S.M.I., Malcolm, A.C., Liew, S.K., Ferguson, M.J., and Rivard, E., J. Am. Chem. Soc., 2011, vol. 133, p. 777. https://doi.org/10.1021/ja1106223

    Article  CAS  PubMed  Google Scholar 

  40. Ruff, J.K. and Hawthorne, M.F., J. Am. Chem. Soc., 1960, vol. 82, p. 2141. https://doi.org/10.1021/ja01494a013

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the resource center of St. Petersburg state university “Magnetic resonance research methods” for the measurements.

Funding

This work was carried out with the financial support of the Russian Science Foundation (grant no. 23-43-04404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Timoshkin.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 10, pp. 1524–1532 https://doi.org/10.31857/S0044460X21100073.

To the 90th Anniversary of A.V. Suvorov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doinikov, D.A., Zavgorodnii, A.S., Kazakov, I.V. et al. Thermal Decomposition of Aluminium Hydride Complexes with Trimethylamine and N-Heterocyclic Carbene. Russ J Gen Chem 91, 1969–1976 (2021). https://doi.org/10.1134/S1070363221100078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221100078

Keywords:

Navigation