Skip to main content
Log in

Vapor Pressure and Thermodynamics of L-Tryptophan Sublimation

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The L-tryptophan sublimation was studied by high-temperature mass spectrometry in the temperature range 395–493 K. The compound evaporates congruently in the form of monomeric molecules. The saturated vapor pressure at 485 K was determined by the Knudsen effusion method. In combination with mass spectrometric data, the pressure equation ln (p, Pa) = –(19943±304)/T + (40.568±0.688) is recommended for the temperature range 395–493 K. The enthalpy of 167.5±1.6 kJ/mol for sublimation at 298.15 K was determined on the basis of the second and third laws of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Svec, H.J. and Clyde, D.D., J. Chem. Eng. Data, 1965, vol. 10, no. 2, p. 151. https://doi.org/10.1021/je60025a024

    Article  CAS  Google Scholar 

  2. de Kruif, C.G., Voogd, J., and Offringa, J.C.A., J. Chem. Thermodyn., 1979, vol. 11, no. 7, p. 651. https://doi.org/10.1016/0021-9614(79)90030-2

    Article  CAS  Google Scholar 

  3. Sabbah, R. and Minadakis, C., Thermochim. Acta, 1981, vol. 43, no. 3, p. 269. https://doi.org/10.1016/0040-6031(81)85184-2

    Article  CAS  Google Scholar 

  4. Tyunina, V.V., Krasnov, A.V., Tyunina, E.Yu., Badelin, V.G., and Girichev, G.V., J. Chem. Thermodyn., 2014, vol. 74, p. 221. https://doi.org/10.1016/j.jct.2014.02.003

    Article  CAS  Google Scholar 

  5. Tyunina, V.V., Krasnov, A.V., Tyunina, E.Yu., Badelin, V.G., and Rybkin, V.V., J. Chem. Thermodyn., 2019, vol. 135, p. 287. https://doi.org/10.1016/j.jct.2019.04.006

    Article  CAS  Google Scholar 

  6. Štejfa, V., Pokorný, V., Miranda, C.F.P., Fernandes, Ó.O.P., and Santos, L.M.N.B.F., ChemPhysChem., 2020, vol. 21, no. 9, p. 938. https://doi.org/10.1002/cphc.202000078

    Article  CAS  PubMed  Google Scholar 

  7. Drowart, J., Chatillon, C., Hastie, J., and Bonnell, D., Pure Appl. Chem., 2005, vol. 77, no. 4, p. 683. https://doi.org/10.1351/pac200577040683

    Article  CAS  Google Scholar 

  8. Sainio, E.-L., Pulkki, K., and Young, S.N., Amino Acids, 1996, vol. 10, no. 1, p. 21. https://doi.org/10.1007/BF00806091

    Article  CAS  PubMed  Google Scholar 

  9. Richard, D.M., Dawes, M.A., Mathias, C.W., Acheson, A., Hill-Kapturczak, N., and Dougherty, D.M., Int. J. Tryptophan Res., 2009, vol. 2, p. 45. https://doi.org/10.4137/ijtr.s2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright, L.R. and Borkman, R.F., J. Am. Chem. Soc., 1980, vol. 102, no. 20, p. 6207. https://doi.org/10.1021/ja00540a006

    Article  CAS  Google Scholar 

  11. Kishor, Sh., Dhayal, S., Mathur, M., and Ramaniah, L.M., Mol. Phys., 2008, vol. 106, no. 19, p. 2289. https://doi.org/10.1080/00268970802422577

    Article  CAS  Google Scholar 

  12. Close, D.M., J. Phys. Chem. A, 2011, vol. 115, no. 13, p. 2900. https://doi.org/10.1021/jp200503z

    Article  CAS  PubMed  Google Scholar 

  13. Dehareng, D. and Dive, G., Int. J. Mol. Sci., 2004, vol. 5, no. 11, p. 301. https://doi.org/10.3390/i5110301

    Article  CAS  Google Scholar 

  14. Ramaniah, L.M., Chakrabarti, A., Kshirsagar, R.J., Kamal, C., and Banerjee, A., Mol. Phys., 2011, vol. 109, no. 6, p. 875. https://doi.org/10.1080/00268976.2011.558027

    Article  CAS  Google Scholar 

  15. Baek, K.Y., Fujimura, Y., Hayash, M., Lin, S.H., and Kim, S.K., J. Phys. Chem. A, 2011, vol. 115, no. 34, p. 9658. https://doi.org/10.1021/jp200826z

    Article  CAS  PubMed  Google Scholar 

  16. Kaczor, A., Reva, I.D., Proniewicz, L.M., and Fausto, R., J. Phys. Chem. A, 2007, vol. 111, no. 15, p. 2957. https://doi.org/10.1021/jp070097c

    Article  CAS  PubMed  Google Scholar 

  17. Sanz, M.E., Cabezas, C., Mata, S., and Alonso, J.L., J. Chem. Phys., 2014, vol. 140, no. 20, p. 204308. https://doi.org/10.1063/1.4876001

    Article  CAS  PubMed  Google Scholar 

  18. Yuan, Y., Mills, M.J.L., Popelier, P.L.A., and Jensen, F., J. Phys. Chem. A, 2014, vol. 118, no. 36, p. 7876. https://doi.org/10.1021/jp503460m

    Article  CAS  PubMed  Google Scholar 

  19. Krauklis, I.V., Tulub, A.V., and Shtyrov, A.A., J. Struct. Chem., 2017, vol. 58, no. 7, p. 1263. https://doi.org/10.1134/S0022476617070010

    Article  CAS  Google Scholar 

  20. Dunaeva, V.V., Girichev, G.V., and Giricheva, N.I., ChemChemTech., 2020, vol. 63, no. 3, p. 37. https://doi.org/10.6060/ivkkt.20206303.6112

    Article  CAS  Google Scholar 

  21. Chao, J., Hall, K.R., Marsh, K.N., and Wilhoit, R.C., J. Phys. Chem. Ref. Data, 1986, vol. 15, no. 4, p. 1369. https://doi.org/10.1063/1.555769

    Article  CAS  Google Scholar 

  22. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 2007, p. 3.

  23. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P.J. an Mallard, W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4D303

  24. Wilson, K.R., Jimenez-Cruz, M., Nicolas, C., Belau, L., Leone, S.R., and Ahmed, M., J. Phys. Chem. A, 2006, vol. 110, no. 6, p. 2106. https://doi.org/10.1021/jp0543734

    Article  CAS  PubMed  Google Scholar 

  25. Plekan, O., Feyer, V., Richter, R., Coreno, M., and Prince, K.C., Mol. Phys., 2008, vol. 106, nos. 9–10, p. 1143. https://doi.org/10.1080/00268970801974875

    Article  CAS  Google Scholar 

  26. Belov, G.V., Iorish, V.S., and Yungman, V.S., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1999, vol. 23, no. 2, p. 173. https://doi.org/10.1016/S0364-5916(99)00023-1

    Article  CAS  Google Scholar 

  27. Lukyanova, V.A., Druzhinina, A.I., Pimenova, S.M., Ioutsi, V.A., Buyanovskaya, A.G., Takazova, R.U., Sagadeyev, E.V., and Gimadeev, A.A., J. Chem. Thermodyn., 2017, vol. 105, p. 44. https://doi.org/10.1016/j.jct.2016.09.041

    Article  CAS  Google Scholar 

  28. Dorofeeva, O.V. and Ryzhova, O.N., J. Phys. Chem. A, 2014, vol. 118, no. 19, p. 3490. https://doi.org/10.1021/jp501357y

    Article  CAS  PubMed  Google Scholar 

  29. Kim, K. and Jordan, K.D., J. Phys. Chem., 1994, vol. 98, no. 40, p. 10089. https://doi.org/10.1021/j100091a024

    Article  CAS  Google Scholar 

  30. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  31. Dunning, T.H. Jr., J. Chem. Phys., 1989, vol. 90, p. 1007. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul,A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

  33. Pogrebnoi, A.M., Kudin, L.S., Kuznetsov, A.Yu., and Butman, M.F., Rapid Commun. Mass Spectrom., 1997, vol. 11, no. 14, p. 1536. https://doi.org/10.1002/(SICI)1097-0231(199709)11:14%3C1536::AID-RCM31%3E3.0.CO;2-D

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.V. Tyunina (G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences) for providing the L-tryptophan preparation and to N.A. Ermolaeva and L.B. Smirnova (Center for Collective Use of the Ivanovo State University of Chemistry and Technology) for recording IR spectra and performing thermogravimetric analysis of samples.

Funding

The scientific research was carried out with the support of the Ivanovo State University of Chemistry and Technology (grant no. 04-ISUCT/1-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Motalov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 10, pp. 1490–1498 https://doi.org/10.31857/S0044460X21100036.

To the 90th Anniversary of A.V. Suvorov

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motalov, V.B., Korobov, M.A., Dunaev, A.M. et al. Vapor Pressure and Thermodynamics of L-Tryptophan Sublimation. Russ J Gen Chem 91, 1938–1945 (2021). https://doi.org/10.1134/S1070363221100030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221100030

Keywords:

Navigation