Skip to main content
Log in

Measurement and Correlation of Solubility of L–Tryptophan in Aqueous Solutions with a Wide Range of pH and Different Monovalent Counterions from 283.15 to 323.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous solubility of L-tryptophan was measured with a wide range of pH (1.00–12.50) and different monovalent counterions (Na+, K+, Cl and \({\text{NO}}_{\text{3}}^{-}\)) from 283.15 to 323.15 K by using a static equilibrium method. The results showed that the solubility of L-tryptophan increased with increasing temperature and the solubility–pH profile was a “U” shape with the lowest value at the isoelectric point. Additionally, the distribution of the ionic forms of L-tryptophan as a function of pH was obtained using the knowledge of the acid–base equilibria of amino acids, and it was found that the isoelectric points increased with temperature. Moreover, different counterions were introduced by using different acids or bases during pH adjustment and their effect on the solubility of L-tryptophan was investigated, which showed that more L-tryptophan could be dissolved in the presence of K+ (or \({\text{NO}}_{\text{3}}^{-}\)) than Na+ (or Cl). Besides, the modified Apelblat model and the NRTL model were successfully used to correlate the aqueous solubility data with all the average relative deviation less than 2.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Matsui, D., Asano, Y.: Creation of thermostable L-tryptophan dehydrogenase by protein engineering and its application for L-tryptophan quantification. Anal. Biochem. 579, 57–63 (2019). https://doi.org/10.1016/j.ab.2019.05.010

    Article  CAS  Google Scholar 

  2. Tröndle, J., Trachtmann, N., Sprenger, G.A., Weuster-Botz, D.: Fed-batch production of L-tryptophan from glycerol using recombinant escherichia coli. Biotechnol. Bioeng. 115, 2881–2892 (2018). https://doi.org/10.1002/bit.26834

    Article  CAS  Google Scholar 

  3. Yang, X., Xu, M., Huang, G., Zhang, C., Pang, Y., Cheng, Y.: Effect of dietary L-tryptophan on the survival, immune response and gut microbiota of the Chinese mitten crab. Eriocheir sinensis. Fish Shellfish Immunol. 84, 1007–1017 (2019). https://doi.org/10.1016/j.fsi.2018.10.076

    Article  CAS  Google Scholar 

  4. Russo, S., Kema, I.P., Bosker, F., Haavik, J., Korf, J.: Tryptophan as an evolutionarily conserved signal to brain serotonin: Molecular evidence and psychiatric implications. World J. Biol. Psychiatry. 10, 258–268 (2009). https://doi.org/10.3109/15622970701513764

    Article  Google Scholar 

  5. Liu, W., Mi, S., Ruan, Z., Li, J., Shu, X., Yao, K., Jiang, M., Deng, Z.: Dietary tryptophan enhanced the expression of tight junction protein ZO-1 in intestine. J. Food Sci. 82, 562–567 (2017). https://doi.org/10.1111/1750-3841.13603

    Article  CAS  Google Scholar 

  6. Moehn, S., Pencharz, P.B., Ball, R.O.: Lessons learned regarding symptoms of tryptophan deficiency and excess from animal requirement studies. J. Nutr. (2012). https://doi.org/10.3945/jn.112.159061

    Article  Google Scholar 

  7. Wen, H., Feng, L., Jiang, W., Liu, Y., Jiang, J., Li, S., Tang, L., Zhang, Y., Kuang, S., Zhou, X.: Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 40, 275–287 (2014). https://doi.org/10.1016/j.fsi.2014.07.004

    Article  CAS  Google Scholar 

  8. Kawasaki, K., Yokota, A., Tomita, F.: L-Tryptophan production by a pyruvic acid-producing escherichia coli strain carrying the enterobacter aerogenes tryptophanase gene. J. Ferment. Bioeng. 82, 604–606 (1996). https://doi.org/10.1016/S0922-338X(97)81262-7

    Article  CAS  Google Scholar 

  9. Donald Warner, B.T., Mob, O.A.: Amino acids I New synthesis of dl-tryptophan, dl-ornithine and dl-glutamic acid. J. Am. Chem. Soc. 70, 2765–2767 (1948). https://doi.org/10.1021/ja01188a038

    Article  Google Scholar 

  10. Watanabe, T., Snell, E.E.: Reversiblility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate and ammonia. Proc. Natl. Acad. Sci. USA 69, 1086–1090 (1972). https://doi.org/10.1073/pnas.69.5.1086

    Article  CAS  Google Scholar 

  11. Yang, J., Wang, Y., Hao, H., Xie, C., Bao, Y., Yin, Q., Gong, J., Jiang, C., Hou, B., Wang, Z.: Spherulitic crystallization of L-tryptophan: Characterization, growth kinetics, and mechanism. Cryst. Growth Des. 15, 5124–5132 (2015). https://doi.org/10.1021/acs.cgd.5b01089

    Article  CAS  Google Scholar 

  12. Zhu, W., Fan, Y., Xu, Q., Liu, X., Heng, B., Yang, W., Hu, Y.: Saturated solubility and thermodynamic evaluation of l-tryptophan in eight pure solvents and three groups of binary mixed solvents by the gravimetric method at T = 278.15–333.15 K. J. Chem. Eng. Data. 64, 4154–4168 (2019). https://doi.org/10.1021/acs.jced.9b00562

    Article  CAS  Google Scholar 

  13. Chen, Q., Wang, J., Bao, Y.: Determination of the crystallization thermodynamics and kinetics of L-tryptophan in alcohols-water system. Fluid Phase Equilib. 313, 182–189 (2012). https://doi.org/10.1016/j.fluid.2011.09.028

    Article  CAS  Google Scholar 

  14. Lee, C.Y., Chen, J.T., Chang, W.T., Shiah, I.M.: Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilib. 343, 30–35 (2013). https://doi.org/10.1016/j.fluid.2013.01.010

    Article  CAS  Google Scholar 

  15. Liu, L.F., Yang, L.L., Jin, K.Y., Xu, D.Q., Gao, C.J.: Recovery of l-tryptophan from crystallization wastewater by combined membrane process. Sep. Purif. Technol. 66, 443–449 (2009). https://doi.org/10.1016/j.seppur.2009.02.013

    Article  CAS  Google Scholar 

  16. Liu, L., Bilal, M., Luo, H., Zhao, Y., Iqbal, H.M.N.: Metabolic engineering and fermentation process strategies for L-tryptophan production by escherichia coli. Processes. 7, 213 (2019). https://doi.org/10.3390/pr7040213

    Article  CAS  Google Scholar 

  17. Xu, L., Han, F., Dong, Z., Wei, Z.: Engineering improves enzymatic synthesis of l-tryptophan by tryptophan synthase from escherichia coli. Microorganisms 8, 519 (2020). https://doi.org/10.3390/microorganisms8040519

    Article  CAS  Google Scholar 

  18. Wu, C., Guo, C., Yang, J., Wei, J., Xu, Q.: Separaton and purification of L-tryptophan from fermentation liquor. Amino Acids Biotic Res. 29, 42–46 (2007)

    CAS  Google Scholar 

  19. Hu, Y., Wang, Y., Yu, H., Liu, J.: Advance of L-tryptophan application and production technology. J. Jilin Agric. Univ. 30, 586–589 (2008)

    CAS  Google Scholar 

  20. Zhang, J., Huang, C., Xu, R.: Solubility of bifonazole in four binary solvent mixtures: experimental measurement and thermodynamic modeling. J. Chem. Eng. Data. 64, 2641–2648 (2019). https://doi.org/10.1021/acs.jced.9b00097

    Article  CAS  Google Scholar 

  21. Shen, Y., Farajtabar, A., Xu, J., Wang, J., Xia, Y., Zhao, H., Xu, R.: Thermodynamic solubility modeling, solvent effect and preferential solvation of curcumin in aqueous co-solvent mixtures of ethanol, n-propanol, isopropanol and propylene glycol. J. Chem. Thermodyn. 131, 410–419 (2019). https://doi.org/10.1016/j.jct.2018.11.022

    Article  CAS  Google Scholar 

  22. Bing yao, G., Xiang xia, Z., Hui Li, Z., Shao, C.: Determination and modeling for solid-liquid phase equilibrium of ternary caprolactam + cyclohexanone oxime + methyl tert-butyl ether system. Fluid Phase Equilib. 417, 242–247 (2016). https://doi.org/10.1016/j.fluid.2016.03.002

    Article  CAS  Google Scholar 

  23. Xu, R., Huang, C.: Solubility Modeling and Solution Thermodynamics of 4-Amino-2,6-Dimethoxypyrimidine in Cosolvent Mixtures of Methanol, Ethanol, Isopropanol, and N,N-Dimethylformamide + Water. J. Chem. Eng. Data. 63, 4234–4240 (2018). https://doi.org/10.1021/acs.jced.8b00719

    Article  CAS  Google Scholar 

  24. Yao, G., Li, Z., Xia, Z., Yao, Q.: Solubility of N-phenylanthranilic acid in nine organic solvents from T = (283.15 to 318.15) K: Determination and modelling. J. Chem. Thermodyn. 103, 218–227 (2016). https://doi.org/10.1016/j.jct.2016.08.017

    Article  CAS  Google Scholar 

  25. Tsuji, A., Nakashima, E., Hamano, S., Yamana, T.: Physicochemical properties of amphoteric β-lactam antibiotics I: Solubility and dissolution behavior of amino cephalosporins as a function of pH. J. Pharm. Sci. 67, 1059–1066 (1978). https://doi.org/10.1002/jps.2600670810

    Article  CAS  Google Scholar 

  26. Tsuji, A., Nakashima, E., Hamano, S., Yamana, T.: Physicochemical properties of amphoteric beta-lactam antibiotics. II: Solubility and dissolution behavior of aminocephalosporins as a function of pH. J. Pharm. Sci. 68, 308–311 (1979). https://doi.org/10.1002/jps.2600680313

    Article  CAS  Google Scholar 

  27. Apelblat, A., Manzurola, E.: SSolubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from 278 to 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997). https://doi.org/10.1006/jcht.1997.0267

    Article  CAS  Google Scholar 

  28. Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 31, 85–91 (1999). https://doi.org/10.1006/jcht.1998.0424

    Article  CAS  Google Scholar 

  29. Zhu, L., Wang, L.Y., Li, X.C., Sha, Z.L., Wang, Y.F., Yang, L.: bin: Experimental determination and correlation of the solubility of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (DMHF) in six different solvents. J. Chem. Thermodyn. 91, 369–377 (2015). https://doi.org/10.1016/j.jct.2015.08.028

    Article  CAS  Google Scholar 

  30. Zhao, H., Xu, H., Yang, Z., Li, R.: Solubility of 3,4-dichloronitrobenzene in methanol, ethanol, and liquid mixtures (methanol + water, ethanol + water): Experimental measurement and thermodynamic modeling. J. Chem. Eng. Data. 58, 3061–3068 (2013). https://doi.org/10.1021/je400507u

    Article  CAS  Google Scholar 

  31. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  32. Liu, Y., Chen, M., Lin, J., Li, M., Li, K., Gao, Z.: Solubility measurement and data correlation of clopidogrel hydrogen sulfate (form I) in four binary solvents systems at temperature from 278.15 to 318.15 K. J. Chem. Eng. Data. 65, 2903–2911 (2020). https://doi.org/10.1021/acs.jced.0c00190

    Article  CAS  Google Scholar 

  33. Li, C., Ji, X., Li, J., Wu, D., Qi, L., Wang, A., Zhou, L., Xie, C., Gong, J., Chen, W.: Measurement and correlation of the solubility of kojic acid in pure and binary solvents. J. Chem. Thermodyn. (2022). https://doi.org/10.1016/j.jct.2021.106712

    Article  Google Scholar 

  34. Shakeel, F., Haq, N., Siddiqui, N.A., Alanazi, F.K., Alsarra, I.A.: Correlation of solubility of bioactive compound reserpine in eight green solvents at (298.15 to 338.15) K. J. Chem. Eng. Data. 60, 775–780 (2015). https://doi.org/10.1021/je500893g

    Article  CAS  Google Scholar 

  35. Görbitz, C.H., Törnroos, K.W., Day, G.M.: Single-crystal investigation of L-tryptophan with Z′ = 16. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 68, 549–557 (2012). https://doi.org/10.1107/S0108768112033484

    Article  CAS  Google Scholar 

  36. Felix, I.M.B., Moreira, L.C., Chiavone-Filho, O., Mattedi, S.: Solubility measurements of amoxicillin in mixtures of water and ethanol from 283.15 to 298.15 K. Fluid Phase Equilib. 422, 78–86 (2016). https://doi.org/10.1016/j.fluid.2016.02.040

    Article  CAS  Google Scholar 

  37. Sun, H., Jiang, C., Liu, B., Zhang, J.: Determination and correlation of solubility of cephradine and cefprozil monohydrate in water as a function of pH. J. Chem. Eng. Data 62, 3423–3430 (2017). https://doi.org/10.1021/acs.jced.7b00446

    Article  CAS  Google Scholar 

  38. Ji, X., Wang, J., Yang, J., Wang, N., Li, X., Tian, B., Huang, X., Hao, H.: Solubility and isoelectric point of cefradine in different solvent systems. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2019.112312

    Article  Google Scholar 

  39. Collins, K.D.: Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions. Biophys. Chem. 167, 43–59 (2012). https://doi.org/10.1016/j.bpc.2012.04.002

    Article  CAS  Google Scholar 

  40. Beck, T.L.: Hydration free energies by energetic partitioning of the potential distribution theorem. J. Stat. Phys. 145, 335–354 (2011). https://doi.org/10.1007/s10955-011-0298-4

    Article  CAS  Google Scholar 

  41. Kiriukhin, M.Y., Collins, K.D.: Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155–168 (2002). https://doi.org/10.1016/S0301-4622(02)00153-9

    Article  CAS  Google Scholar 

  42. Qiu, J., Patel, A., Stevens, J.M.: High-throughput salt screening of synthetic intermediates: Effects of solvents, counterions, and counterion solubility. Org. Process. Res. Dev. 24, 1262–1270 (2020). https://doi.org/10.1021/acs.oprd.0c00132

    Article  CAS  Google Scholar 

  43. Gomes, M.T.M.S., Pelegrine, D.H.G.: Solubility of egg white proteins: Effect of pH and temperature. J. Food Eng. (2012). https://doi.org/10.1515/1556-3758.2847

    Article  Google Scholar 

  44. Galcera, J., Molins, E.: Effect of the counterion on the solubility of isostructural pharmaceutical lamotrigine salts. Cryst. Growth Des. 9, 327–334 (2009). https://doi.org/10.1021/cg8005025

    Article  CAS  Google Scholar 

  45. El-Dossoki, F.I.: Effect of the charge and the nature of both cations and anions on the solubility of zwitterionic amino acids, measurements and modeling. J. Solution. Chem. 39, 1311–1326 (2010). https://doi.org/10.1007/s10953-010-9580-3

    Article  CAS  Google Scholar 

  46. Pradhan, A.A., Vera, J.H.: Effect of anions on the solubility of zwitterionic amino acids. J. Chem. Eng. Data. 45, 140–143 (2000). https://doi.org/10.1021/je9902342

    Article  CAS  Google Scholar 

  47. Pradhan, A.A., Vera, J.H.: Effect of acids and bases on the solubility of amino acids. Fluid Phase Equilib 152, 121–132 (1998). https://doi.org/10.1016/S0378-3812(98)00387-2

    Article  CAS  Google Scholar 

  48. Guin, P.S., Roy, S.: Electrolytic effects on solubility and Gibbs free energies of 1,4-dihydroxy-9,10-anthraquinone in aqueous methanol media via UV–Vis spectroscopic and theoretical studies. Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2020.137292

    Article  Google Scholar 

  49. Bretti, C., Crea, F., De Stefano, C., Sammartano, S., Vianelli, G.: Some thermodynamic properties of DL-Tyrosine and DL-Tryptophan. Effect of the ionic medium, ionic strength and temperature on the solubility and acid-base properties. Fluid Phase Equilib. 314, 185–197 (2012). https://doi.org/10.1016/j.fluid.2011.10.007

    Article  CAS  Google Scholar 

  50. Bergen, R.L., Jr., Long, F.A.: The salting in of substituted benzenes by large ion salts. J. Phys. Chem. 60, 1131–1135 (1956). https://doi.org/10.1021/j150542a024

    Article  CAS  Google Scholar 

  51. Battaglia, G., Cigala, R.M., Crea, F., Sammartano, S.: Solubility and acid-base properties of ethylenediaminetetraacetic acid in aqueous NaCl solution at0 <= I <= 6 molkg.(-1) and T=298.15 K. J. Chem. Eng. Data. 53, 363–367 (2008). https://doi.org/10.1021/je700391c

    Article  CAS  Google Scholar 

  52. Bretti, C., Crea, F., De Stefano, C., Sammartano, S.: Solubility and activity coefficients of 2,2 ’-bipyridyl, 1,10-phenanthroline and 2,2 ’,6 ’,2 ’ ’-terpyridine in NaCl(aq) at different ionic strengths and T=298.15 K. Fluid Phase Equilib. 272, 47–52 (2008). https://doi.org/10.1016/j.fluid.2008.07.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Special project for the transformation of major scientific and technological achievements of Hebei Province (19042822Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zhou or Qiuxiang Yin.

Ethics declarations

Conflicts of interests

There is no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Jia, L., Yang, W. et al. Measurement and Correlation of Solubility of L–Tryptophan in Aqueous Solutions with a Wide Range of pH and Different Monovalent Counterions from 283.15 to 323.15 K. J Solution Chem 52, 228–250 (2023). https://doi.org/10.1007/s10953-022-01229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01229-0

Keywords

Navigation