Skip to main content
Log in

Synthesis and Characterization of Water-Soluble Arabinogalactan-Stabilized Bismuth Telluride Nanoparticles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Water-soluble nanocomposites consisting of arabinogalactan (AG)-stabilized Bi2Te3 nanoparticles with an average size of 32–44 nm were synthesized for the first time on the basis of the natural polysaccharide arabinogalactan and telluride ions generated from elemental tellurium in the system N2H4·H2O–KOH. The phase composition, morphology, and average size of Bi2Te3 nanoparticles were found to be determined by the conditions of their synthesis. Increase of the ratio AG/Bi3+/Te2– is accompanied by reduction of the degree of sphericity and increase of the average size of Bi2Te3 nanoparticles, as well as by the transition of the AG/Bi2Te3 nanocomposite from amorphous to amorphous–crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Min, G. and Rowe, D.M., Appl. Phys. Lett., 2000, vol. 77, no. 6, p. 860. https://doi.org/10.1063/1.1306652

    Article  CAS  Google Scholar 

  2. Hubbard, W.A., Mecklenburg, M., Lodico, J.J., Chen, Y., Ling, X.Y., Patil, R., Kessel, W.A., Flatt, G.J.K., Chan, H.L., Vareskic, B., Bal, G., Zutter, B., and Regan, B.C., ACS Nano, 2020, vol. 14, no. 9, p. 11510. https://doi.org/10.1021/acsnano.0c03958

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, D., Wang, Y., and Yang, Y., Small, 2019, vol. 15, no. 32, article ID 1805241. https://doi.org/10.1002/smll.201805241

  4. Advanced Topological Insulators, Luo, H., Ed., Beverly: Scrivener Publishing, 2019, p. 45.

  5. Mamur, H., Bhuiyan, M.R.A., Korkmaz, F., and Nil, M., Renewable Sustainable Energy Rev., 2018, vol. 82, p. 4159. https://doi.org/10.1016/j.rser.2017.10.112

    Article  CAS  Google Scholar 

  6. He, M., Qiu, F., and Lin, Z., Energy Environ. Sci., 2013, vol. 6, no. 6, p. 1352. https://doi.org/10.1039/c3ee24193a

    Article  Google Scholar 

  7. Fu, J., Song, S., Zhang, X., Cao, F., Zhou, L., Li, X., and Zhang, H., CrystEngComm, 2012, vol. 14, no. 6, p. 2159. https://doi.org/10.1039/c2ce06348d

    Article  CAS  Google Scholar 

  8. Chatterjee, K., Mitra, M., Kargupta, K., Ganguly, S., and Banerjee, D., Nanotechnology, 2013, vol. 24, no. 21, article ID 215703. https://doi.org/10.1088/0957-4484/24/21/215703

  9. Pradhan, S., Das, R., Bhar, R., and Bandyopadhyay, R., J. Nanopart. Res., 2017, vol. 19, no. 2, p. 69. https://doi.org/10.1007/s11051-017-3745-6

    Article  CAS  Google Scholar 

  10. Tang, M., Zhang, J.-Y., Bi, S., Hou, Z.-L., Shao, X.-H., Zhan, K.-T., and Cao, M.-S., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 36, p. 33285. https://doi.org/10.1021/acsami.9b13775

    Article  CAS  PubMed  Google Scholar 

  11. Ji, X., Zhang, B., Tritt, T.M., Kolis, J.W., and Kumbhar, A., J. Electron. Mater., 2007, vol. 36, no. 7, p. 721. https://doi.org/10.1007/s11664-007-0156-y

    Article  CAS  Google Scholar 

  12. Rashad, M.M., El-Dissouky, A., Soliman, H.M., Elseman, A.M., Refaat, H.M., and Ebrahim, A., Mater. Res. Innovations, 2018, vol. 22, no. 6, p. 315. https://doi.org/10.1080/14328917.2017.1320838

    Article  CAS  Google Scholar 

  13. Pelz, U., Kaspar, K., Schmidt, S., Dold, M., Jagle, M., Pfaadt, A., and Hillebrecht, H., J. Electron. Mater., 2012, vol. 41, no. 6, p. 1851. https://doi.org/10.1007/s11664-012-2099-1

    Article  CAS  Google Scholar 

  14. Srivastava, P. and Singh, K., J. Exp. Nanosci., 2013, vol. 9, no. 10, p. 1064. https://doi.org/10.1080/17458080.2012.762122

    Article  CAS  Google Scholar 

  15. Yokoyama, S., Sato, K., Muramatsu, M., Yamasuge, T., Itoh, T., Motomiya, K., Takahashi, H., and Tohjim, K., Adv. Powder Technol., 2015, vol. 26, no. 3, p. 789. https://doi.org/10.1016/j.apt.2015.02.002

    Article  CAS  Google Scholar 

  16. Liu, Y., Wang, Q., Pan, J., Sun, Y., Zhang, L., and Song, S., Chem.-Eur. J., 2018, vol. 24, no. 39, p. 9765. https://doi.org/10.1002/chem.201801611

    Article  CAS  PubMed  Google Scholar 

  17. Aleksandrova, G.P., Sapozhnikov, A.N., Sukhov, B.G., and Trofimov, B.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2369. https://doi.org/10.1134/S1070363217100188

    Article  CAS  Google Scholar 

  18. Petrova, M.V., Kiryutin, A.S., Savelov, A.A., Lukzen, N.N., Yurkovskaya, A.V., Bogomyakov, A.S., Ovcharenko, V.I., Vieth, H.M., Aleksandrova, G.P., Sukhov, B.G., and Trofimov, B.A., Appl. Magn. Reson., 2011, vol. 41, nos. 2–4, p. 525. https://doi.org/10.1007/s00723-011-0241-5

    Article  CAS  Google Scholar 

  19. Lesnichaya, M.V., Malysheva, S.F., Belogorlova, N.A., Graskova, I.A., Gazizova, A.V., Perfilyeva, A.I., Nozhkina, O.A., and Sukhov, B.V., Russ. Chem. Bull., Int. Ed., 2019, vol. 68, no. 12, p.2245. https://doi.org/10.1007/s11172-019-2694-x

    Article  CAS  Google Scholar 

  20. Dubrovina, V.I., Medvedeva, S.A., Vityazeva, S.A., Kolesnikova, O.B., Aleksandrova, G.P., Gutsol, L.O., Grishchenko, L.A., and Chetveryakova, T.D., Struktura i immunomoduliruyushchee deistvie arabinogalaktana listvennitsy sibirskoi i ego metalloproizvodnykh (Structure and Immunomodulatory Activity of Arabinogalactan from Larix sibirica and Its Metal Derivatives), Irkutsk: Asprint, 2007, p. 140.

  21. Zhmurova, A.V., Zelenkov, L.E., Illarionov, A.I., Shendrik, R.Yu., Sapozhnikov, A.N., Klimenkov, I.V., Sukhov, B.G., and Trofimov, B.A., Geogr. Prir. Resur., 2016, no. 56, p. 169.

    Google Scholar 

  22. Dongol, M., El-Nahass, M.M., El-Denglawey, A., El-hady, A.F., and Abuelwafa, A.A., Curr. Appl. Phys., 2010, vol. 12, no. 4, p. 1178. https://doi.org/10.1016/j.cap.2012.02.051

    Article  Google Scholar 

  23. Singh, J., Verma, V., Kumar, R., Sharma, S., and Kumar, R., Mater. Res. Express, 2019, vol. 6, no. 8, article ID 085039. https://doi.org/10.1088/2053-1591/ab195c

  24. Bejenari, I., Kantser, V., and Balandin, A.A., Phys. Rev. B, 2010, vol. 81, no. 7, article ID 075316. https://doi.org/10.1103/physrevB.81.075316

  25. Brus, L., J. Phys. Chem., 1986, vol. 90, no. 12, p. 2555. https://doi.org/10.1021/j100403a003

    Article  CAS  Google Scholar 

  26. Pesika, N.S., Stebe, K.J., and Searson, P.C., Adv. Mater., 2003, vol. 15, no. 15, p. 1289. https://doi.org/10.1002/adma.200305104

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were carried out using materials and equipment of Baikal joint analytical center of the Favorsky Irkutsk Institute of Chemistry (Siberian Branch, Russian Academy of Sciences), joint center of the Limnological institute (Siberian Branch, Russian Academy of Sciences), and Isotope-Geochemical Study joint center of the Institute of Geochemistry (Siberian Branch, Russian Academy of Sciences).

Funding

This study was performed in the framework of state assignments to the Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences (project nos. AAAA-A19-119022690046-4, AAAA-A16-116112510011-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lesnichaya.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 7, pp. 1120–1129 https://doi.org/10.31857/S0044460X21070167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnichaya, M.V., Zhmurova, A.V. & Sapozhnikov, A.N. Synthesis and Characterization of Water-Soluble Arabinogalactan-Stabilized Bismuth Telluride Nanoparticles. Russ J Gen Chem 91, 1379–1386 (2021). https://doi.org/10.1134/S1070363221070161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221070161

Keywords:

Navigation