Skip to main content
Log in

A Theoretical and Experimental Study of NMR Contrasting Properties of Nanocomposites Based on Ferric Oxides Stabilized by Arabinogalactan Matrix

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance relaxation properties of aqueous solution containing nanocomposites based on magnetite and maghemite nanoparticles stabilized by arabinogalactan obtained from Baikal larch (Larix sibirica) wood matrix were investigated. The relaxation properties of the solutions, namely, viscosity dependences of T 1 and T 2 and magnetic field dependence of T 1, were studied experimentally. Two models of the nanocomposite granular structure corresponding to two limiting cases of ferromagnetic material distribution over the arabinogalactan matrix were considered. The first one assumes a homogeneous distribution of magnetite and maghemite nanoparticles over the spherical arabinogalactan matrix, while the second one considers a single hard ferromagnetic core at the center of the spherical arabinogalactan matrix. Theoretical fitting of the experimental results within these models was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  2. Y. Gossuin, P. Gillis, A. Hocq, Q.L. Vuong, A. Roch, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 299–310 (2009)

    Article  Google Scholar 

  3. C. Corot, P. Robert, J.-M. Idée, M. Port, Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)

    Article  Google Scholar 

  4. E.R. Wisner, E.G. Amparo, D.R. Vera, J.M. Brock, T.W. Barlow, S.M. Griffey, C. Drake, R.W. Katzberg, J. Comp. Ass. Tomogr. 19, 211–215 (1995)

    Article  Google Scholar 

  5. A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  6. R. Lawaczeck, M. Menzel, H. Pietsch, Appl. Organometal. Chem. 18, 506–513 (2004)

    Article  Google Scholar 

  7. R. Weissleader, P. Reimer, A.S. Lee, J. Wittenberg, T.J. Brady, Am. J. Roentgenol. 155, 1161–1167 (1990)

    Google Scholar 

  8. S.A. Medvedeva, G.P. Aleksandrova, V.I. Dubrovina, T.D. Tchetverikova, L.A. Grishchenko, I.M. Krasnikova, L.P. Feoktistova, N.A. Tukavkina, Butlerov Comm. 2, 45–50 (2002)

    Google Scholar 

  9. E.N. Medvedeva, V.A. Babkin, L.A. Ostrouhova, Chem. Plant Raw Mater. 1, 27–37 (2003)

    Google Scholar 

  10. A. Roch, R.N. Muller, J. Chem. Phys. 110, 5403–5411 (1999)

    Article  ADS  Google Scholar 

  11. S.H. Koenig, K.E. Kellar, Magn. Res. Med. 34, 227–233 (1995)

    Article  Google Scholar 

  12. P. Gillis, F. Moiny, R.A. Brooks, Magn. Res. Med. 47, 257–263 (2002)

    Article  Google Scholar 

  13. S.A. Medvedeva, G.P. Aleksandrova, L.A. Grischenko, N.A. Tyukavkina, Russ. J. Gen. Chem. 72, 1480–1484 (2002)

    Article  Google Scholar 

  14. G.P. Aleksandrova, L.A. Grishchenko, A.S. Bogomyakov, B.G. Sukhov, V.I. Ovcharenko, B.A. Trofimov, Russ. Chem. Bull. 59, 2318–2322 (2010)

    Google Scholar 

  15. G.P. Aleksandrova, L.A. Grishchenko, V.M. Kozhevnikov, I.V. Klimenkov, B.G. Sukhov, B.A. Trofimov, Nanotechnics 15, 11–15 (2008)

    Google Scholar 

  16. G.P. Aleksandrova, L.P. Feoktistova, O.A. Proidakova, A.N. Sapozhnikov, Structural characteristics of nanosize magnetics on the basis of polymeric matrix, in Abstract of the 13th International Meeting Order, Disorder and Properties of Oxides, Rostov-on-Don, vol. 1, pp. 12–14, 16–21 September 2010

  17. S. Grosse, F. Gubaydullin, H. Scheelken, H.-M. Vieth, A.V. Yurkovskaya, Appl. Magn. Reson. 17, 211–225 (1999)

    Article  Google Scholar 

  18. P.C. Fannin, S.W. Charles, J. Phys. D Appl. Phys. 27, 185–188 (1994)

    Article  ADS  Google Scholar 

  19. P.F. Châtel, I. Nándon, J. Hakl, S. Mészáros, K. Vad, J. Phys. Condens. Matter 21, 124202 (2009)

    Article  ADS  Google Scholar 

  20. P.V. Meleneva, V.V. Rusakova, Yu.L. Raikher, R. Perzynski, Bull. Russ. Acad. Sci. Phys. 74, 1440–1442 (2010)

    Google Scholar 

  21. L.-P. Hwang, J.H. Freed, J. Chem. Phys. 63, 4017–4025 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  22. C.P. Slichter, in Principles of Magnetic Resonance, 2nd edn. (Springer, Heidelberg, 1978; Mir, Moscow, 1981)

  23. A. Roch, Y. Gossuin, R.N. Muller, P. Gillis, J. Magn. Magn. Mater. 293, 532–539 (2005)

    Article  ADS  Google Scholar 

  24. B. Halle, J. Chem. Phys. 119, 12372–12385 (2003)

    Article  ADS  Google Scholar 

  25. D.A. Kokorin, Study of relaxation in solutions of nanocomposites based on ferric oxides by MR imaging techniques, XLVI International scientific students conference, Physics, Novosibirsk, pp. 207–208, 26–30 April 2010

  26. L. LaConte, N. Nitin, O. Zurkiya, D. Caruntu, C.J. O’Connor, X. Hu, G. Bao, J. Magn. Reson. Imaging 26, 1634–1641 (2007)

    Article  Google Scholar 

  27. B.A. Trofimov, B.G. Sukhov, G.P. Aleksandrova, S.A. Medvedeva, L.A. Grishchenko, A.G. Mal’kina, L.P. Feoktistova, A.N. Sapozhnikov, V.I. Dubrovina, E.F. Martynovich, V.V. Tirskii, A.L. Semenov, Doklady Chem. 393, 287–288 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 09-03-00091 and 11-03-00296), President grant for supporting the Leading Scientific Schools (7643.2010.3), the Division of Chemistry and Material Science of the Russian Academy of Sciences (RAS) grant (No. 5.1.1.) and the Siberian Branch RAS grant (Nos. 47 and 93).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Petrova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, M.V., Kiryutin, A.S., Savelov, A.A. et al. A Theoretical and Experimental Study of NMR Contrasting Properties of Nanocomposites Based on Ferric Oxides Stabilized by Arabinogalactan Matrix. Appl Magn Reson 41, 525–536 (2011). https://doi.org/10.1007/s00723-011-0241-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0241-5

Keywords

Navigation