Skip to main content
Log in

Structural Parameters of the Nearest Surrounding of Group II Metal Ions in Oxygen-Containing Solvents

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review generalizes and analyzes the reference data on the structure parameters of the nearest surrounding of the group II metal ions in different oxygen-containing solvents: coordination numbers of the cations, interparticle distances, and types of ionic association. The structures of the nearest surrounding of the cations in water and certain nonaqueous systems have been compared. The number of solvent molecules and the distance between the cation and oxygen atoms in the first coordination sphere are independent of physicochemical properties of the solvent, being determined by the ions properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2008, vol. 78, no. 9, p. 1643. https://doi.org/10.1134/S1070363208090016

    Article  CAS  Google Scholar 

  2. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1600. https://doi.org/10.1134/S1070363209080027

    Article  CAS  Google Scholar 

  3. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2011, vol. 81, no. 2, p. 282. https://doi.org/10.1134/S1070363209080027

    Article  CAS  Google Scholar 

  4. Balasubramanian, G., Murad, S., Kappiyoor, R., and Puri, I.K., Chem. Phys. Lett., 2011, vol. 508, nos. 1–3, p. 38. https://doi.org/10.1016/j.cplett.2011.04.010

    Article  CAS  Google Scholar 

  5. Bhattacharjee, A., Pribil, A.B., Randolf, B.R., Rode, B.M., and Hofer, T.S., Chem. Phys. Lett., 2012, vol. 536, p. 39. https://doi.org/10.1016/j.cplett.2012.03.049

    Article  CAS  Google Scholar 

  6. Riahi, S., Roux, B., and Rowley, C.N., Canad. J. Chem., 2013, vol. 91, no. 7, p. 552. https://doi.org/10.1139/cjc-2012-0515

    Article  CAS  Google Scholar 

  7. Chen, H. and Ruckenstein, E., J. Phys. Chem. (B), 2015, vol. 119, no. 39, p. 12671. https://doi.org/10.1021/acs.jpcb.5b06837

    Article  CAS  Google Scholar 

  8. Liu, C., Min, F., Liu, L., and Chen, J., Chem. Phys. Lett., 2019, vol. 727, p. 31. https://doi.org/10.1016/j.cplett.2019.04.045

    Article  CAS  Google Scholar 

  9. Bai, G., Yi, H.-B., Li, H.-J., and Xu, J.-J., Mol. Phys., 2013, vol. 111, no. 4, p. 553. https://doi.org/10.1080/00268976.2012.737035

    Article  CAS  Google Scholar 

  10. Tazi, S., Molina, J.J., Rotenberg, B., Turq, P., Vuilleumier, R., and Salanne, M., J. Chem. Phys., 2012, vol. 136, p. 114507. https://doi.org/10.1063/1.3692965

    Article  CAS  PubMed  Google Scholar 

  11. Neela, Y.I., Mahadevi, A.S., and Sastry, G.N., Struct. Chem., 2013, vol. 24, no. 2, p. 637. https://doi.org/10.1007/s11224-012-0113-0

    Article  CAS  Google Scholar 

  12. Deublein, S., Reiser, S., Vrabec, J., and Hasse, H., J. Phys. Chem. (B), 2012, vol. 116, no. 18, p. 5448. https://doi.org/10.1021/jp3013514

    Article  CAS  Google Scholar 

  13. Bruni, F., Imberti, S., Mancinelli, R., and Ricci, M.A., J. Chem. Phys., 2012, vol. 136, no. 6, p. 064520. https://doi.org/10.1063/1.3684633

    Article  CAS  Google Scholar 

  14. Teychené, J., Roux-de Balmann, H., Maron, L., and Galier, S., ACS Cent. Sci., 2018, vol. 4, no. 11, p. 1531. https://doi.org/10.1021/acscentsci.8b00610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teychene, J., Roux-de Balmann, H., Maron, L., and Galier, S., J. Mol. Liq., 2019, vol. 294, p. 111394. https://doi.org/10.1016/j.molliq.2019.111394

    Article  CAS  Google Scholar 

  16. Saxena, A. and García, A.E., J. Phys. Chem. (B), 2015, vol. 119, no. 1, p. 219. https://doi.org/10.1021/jp507008x

    Article  CAS  Google Scholar 

  17. Yadav, S. and Chandra, A., J. Chem. Phys., 2017, vol. 147, no. 24, p. 244503. https://doi.org/10.1063/1.4996273

    Article  CAS  PubMed  Google Scholar 

  18. Friesen, S., Hefter, G., and Buchner, R., J. Phys. Chem. (B), 2019, vol. 123, no. 4, p. 891. https://doi.org/10.1021/acs.jpcb.8b11131

    Article  CAS  Google Scholar 

  19. Sebastiani, F., Verde, A.V., Heyden, M., Schwaab, G., and Havenith, M., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 12140. https://doi.org/10.1039/C9CP06845G

    Article  CAS  PubMed  Google Scholar 

  20. Smirnov, P.R., Russ. J. Gen. Chem., 2008, vol. 83, no. 11, p. 1967. https://doi.org/10.1134/S1070363213110017

    Article  CAS  Google Scholar 

  21. Alger, T.D., J. Am. Chem. Soc., 1969, vol. 91, no. 9, p. 2220. https://doi.org/10.1021/ja01037a006

    Article  CAS  Google Scholar 

  22. Chatterjee, A., Dixit, M.K., and Tembe, B.L., J. Phys. Chem. (A), 2013, vol. 117, no. 36, p. 8703. https://doi.org/10.1021/jp4031706

    Article  CAS  Google Scholar 

  23. Ullstrom, A., Warminska, D., and Persson, I., J. Coord. Chem., 2005, vol. 58, no. 7, p. 611. https://doi.org/10.1080/00958970500039181

    Article  CAS  Google Scholar 

  24. Bobicz, D. and Grzybkowski, W., J. Solut. Chem., 2002, vol. 31, no. 3, p. 223.

    Article  CAS  Google Scholar 

  25. Da Silva, E.F. and Alves, W.A., Vibr. Spectrosc., 2012, vol. 62, p. 264. https://doi.org/10.1016/j.vibspec.2012.05.011

    Article  CAS  Google Scholar 

  26. Asada, M., Fujimori, T., Fujii, K., Kanzaki, R., Umebayashi, Y., and Ishiguro, S., J. Raman Spectrosc., 2007, vol. 38, no. 4, p. 417. https://doi.org/10.1002/jrs.1662

    Article  CAS  Google Scholar 

  27. Rudolph, W.W. and Irmer, G., Dalton Trans., 2013, vol. 42, no. 11, p. 3919. https://doi.org/10.1039/c2dt31718d

    Article  CAS  PubMed  Google Scholar 

  28. Chizhik, V.I., Egorov, A.V., Pavlova, M.S., Egorova, M.I., and Donets, A.V., J. Mol. Liq., 2016, vol. 224, p. 730. https://doi.org/10.1016/j.molliq.2016.10.035

    Article  CAS  Google Scholar 

  29. Yamaguchi, T., Nishino, M., Yoshida, K., Takumi, M., Nagata, K., and Hattori, T., Eur. J. Inorg. Chem., 2019, no. 8, p. 1170. https://doi.org/10.1002/ejic.201900016

    Article  CAS  Google Scholar 

  30. Ohkubo, T., Kusudo, T., and Kuroda, Y., J. Phys. Condens. Matter., 2016, vol. 28, no. 46, p. 464003. https://doi.org/10.1088/0953-8984/28/46/464003

    Article  CAS  PubMed  Google Scholar 

  31. Noval, A.M., Nishio, D., Kuruma, T., and Hayakawa, S., J. Mol. Struct., 2018, vol. 1161, p. 512. https://doi.org/10.1016/j.molstruc.2018.02.075

    Article  CAS  Google Scholar 

  32. Ren, G., Ha, Y., Liu, Y.-S., Feng, X., Zhang, N., Yu, P., Zhang, L., Yang, W., Feng, J., Guo, J., and Liu, X., J. Phys. Chem. (B), 2020, vol. 124, no. 16, p. 3408. https://doi.org/10.1021/acs.jpcb.0c02437

    Article  CAS  Google Scholar 

  33. Saisopa, T., Klaiphet, K., Songsiriritthigul, P., Pokapanich, W., Tangsukworakhun, S., Songsiriritthigul, C., Saiyasombat, C., Rattanachai, Y., Yuzawa, H., Kosugi, N., and Ceolin, D., J. Electron. Spectros. Relat. Phenom., 2020, vol. 244, p. 146984. https://doi.org/10.1016/j.elspec.2020.146984

    Article  CAS  Google Scholar 

  34. Adeagbo, W.A., Doltsinis, N.L., Burchard, M., Maresch, W.V., and Fockenberg, T., J. Chem. Phys., 2012, vol. 137, no. 12, p. 124502. https://doi.org/10.1063/1.4754129

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, L., Xu, J., Xu, L., and Wu, X., J. Chem. Phys., 2019, vol. 150, no. 12, p. 124505. https://doi.org/10.1063/1.5086939

    Article  CAS  PubMed  Google Scholar 

  36. Bogatko, S., Cauët, E., Bylaska, E., Schenter, G., Fulton, J., and Weare, J., Chemistry, 2013, vol. 19, no. 9, p. 3047. https://doi.org/10.1002/chem.201202821

    Article  CAS  PubMed  Google Scholar 

  37. Wanprakhon, S., Tongraar, A., and Kerdcharoen, T., Chem. Phys. Lett., 2011, vol. 517, nos. 4–6, p. 171. https://doi.org/10.1016/j.cplett.2011.10.048

    Article  CAS  Google Scholar 

  38. Kohagen, M., Mason, P.E., and Jungwirth, P., J. Phys. Chem. (B), 2014, vol. 118, no. 28, p. 7902. https://doi.org/10.1021/jp5005693

    Article  CAS  Google Scholar 

  39. Hartkamp, R. and Coasne, B., J. Chem. Phys., 2014, vol. 141, no. 12, p. 124508. https://doi.org/10.1063/1.4896380

    Article  CAS  PubMed  Google Scholar 

  40. Sáenz-Tavera, I.C. and Rosas-García, V.M., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 5744. https://doi.org/10.1039/C8CP06353B

    Article  PubMed  Google Scholar 

  41. Pham, V.T. and Fulton, J.L., J. Chem. Phys., 2013, vol. 138, no. 4, p. 044201. https://doi.org/10.1063/1.4775588

    Article  CAS  Google Scholar 

  42. Zhu, F., Zhou, H., Wang, X., Zhou, Y., Liu, H., Fang, C., and Fang, Y., J. Raman Spectrosc., 2018, vol. 49, no. 5, p. 852. https://doi.org/10.1002/jrs.5349

    Article  CAS  Google Scholar 

  43. Wang, X., Toroz, D., Kim, S., Clegg, S.L., Park, G.-S., and Di Tommaso, D., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 16301. https://doi.org/10.1039/D0CP01957G

    Article  CAS  PubMed  Google Scholar 

  44. Salanne, M., Tazi, S., Vuilleumier, R., and Rotenberg, B., ChemPhysChem., 2017, vol. 18, no. 19, p. 2807. https://doi.org/10.1002/cphc.201700286

    Article  CAS  PubMed  Google Scholar 

  45. Adya, A., Kalugin, O., Volobuev, M., and Kolesnik, Y., Mol. Phys., 2001, vol. 99, no. 10, p. 835. https://doi.org/10.1080/00268970010024867

    Article  CAS  Google Scholar 

  46. Ohashi, K., Hikiishi, N., and Takeshita, H., Spectrochim. Acta, 2019, vol. 206, p. 113. https://doi.org/10.1016/j.saa.2018.07.089

    Article  CAS  Google Scholar 

  47. Umebayashi, Y., Mune, Y., Tsukamoto, T., Zhang, Y., and Ishiguro, S., J. Mol. Liq., 2005, vol. 118, nos. 1–3, p. 45. https://doi.org/10.1016/j.molliq.2004.07.010

    Article  CAS  Google Scholar 

  48. Merat, K., Chaodamrongsakul, J., Tanthanuch, W., and Vao-soongnern, V., J. Non-Cryst. Solids, 2013, vols. 371–372, p. 47. https://doi.org/10.1016/j.jnoncrysol.2013.04.033

    Article  CAS  Google Scholar 

  49. Boda, A., De, S., Ali, Sk.M., Tulishetti, S., Khan, S., and Singh, J.K., J. Mol. Liq., 2012, vol. 172, p. 110. https://doi.org/10.1016/j.molliq.2012.05.006

    Article  CAS  Google Scholar 

  50. D’Angelo, P., Migliorati, V., Sessa, F., Mancini, G., and Persson, I., J. Phys. Chem. (B), 2016, vol. 120, no. 17, p. 4114. https://doi.org/10.1021/acs.jpcb.6b01054

    Article  CAS  Google Scholar 

  51. Chaudhari, M. and Rempe, S.B., J. Chem. Phys., 2018, vol. 148, no. 22, p. 222831. https://doi.org/10.1063/1.5023130

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, F., Zhou, H., Fang, C., Fang, Y., Zhou, Y., and Liu, H., Mol. Phys., 2018, vol. 116, no. 2, p. 273. https://doi.org/10.1080/00268976.2017.1382739

    Article  CAS  Google Scholar 

  53. Roccatano, D., Berendsen, H.J.C., and D’Angelo, P., J. Chem. Phys., 1998, vol. 108, no. 22, p. 9487. https://doi.org/10.1063/1.476398

    Article  CAS  Google Scholar 

  54. Kim, H.S., Phys. Chem. Chem. Phys., 2000, vol. 2, no. 13, p. 2919. https://doi.org/10.1039/b002572k

    Article  CAS  Google Scholar 

  55. Persson, I., Sandström, M., Yokoyama, H., and Chaudhry, M., Z. Naturforsh., 1995, vol. 50, no. 1, p. 21. https://doi.org/10.1515/zna-1995-0105

    Article  CAS  Google Scholar 

  56. Moreau, G., Scopelliti, R., Helm, L., Purans, J., and Merbach, A.E., J. Phys. Chem. (A), 2002, vol. 106, no. 41, p. 9612. https://doi.org/10.1021/jp026061w

    Article  CAS  Google Scholar 

  57. Lundberg, D., Warmińska, D., Fuchs, A., and Persson, I., Phys. Chem. Chem. Phys., 2018, vol. 20, p. 14525. https://doi.org/10.1039/C8CP02244E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaudhari, M.I., Soniat, M., and Rempe, S.B., J. Phys. Chem. (B), 2015, vol. 119, no. 28, p. 8746. https://doi.org/10.1021/acs.jpcb.5b03050

    Article  CAS  Google Scholar 

  59. Migliorati, V., Caruso, A., and D’Angelo, P., Inorg. Chem., 2019, vol. 58, no. 21, p. 14551. https://doi.org/10.1021/acs.inorgchem.9b02204

    Article  CAS  PubMed  Google Scholar 

  60. Smirnov, P.R. and Trostin, V.N., Strukturnye parametry blizhnego okruzheniya ionov v vodnykh rastvorakh neorganicheskikh elektrolitov (Structural Parameters of the Nearest Environment of Ions in Aqueous Solutions of Inorganic Electrolytes), Ivanovo, 2011.

  61. Migliorati, V., Mancini, G., Tatoli, S., Zitolo, A., Filipponi, A., De Panfilis, S., Di Cicco, A., and D’Angelo, P., Inorg. Chem., 2013, vol. 52, no. 2, p. 1141. https://doi.org/10.1021/ic302530k

    Article  CAS  PubMed  Google Scholar 

  62. Jana, C., Ohanessian, G., and Clavaguéra, C., Theor. Chem. Acc., 2016, vol. 135, p. 141. https://doi.org/10.1007/s00214-016-1887-8

    Article  CAS  Google Scholar 

  63. Stellato, F., Calandra, M., D’Acapito, F., De Santis, E., La Penna, G., Rossi, G., and Morante, S., Phys. Chem. Chem. Phys., 2018, vol. 20, p. 24775. https://doi.org/10.1039/C8CP04355H

    Article  CAS  PubMed  Google Scholar 

  64. Duboué-Dijon, E., Mason, P.E., Fischer, H.E., and Jungwirth, P., J. Phys. Chem. (B), 2018, vol. 122, no. 13, p. 3296. https://doi.org/10.1021/acs.jpcb.7b09612

    Article  CAS  Google Scholar 

  65. Yuan, X. and Zhang, C., Comput. Theor. Chem., 2020, vol. 1171, p. 112666. https://doi.org/10.1016/j.comptc.2019.112666

    Article  CAS  Google Scholar 

  66. Inada, Y., Hayashi, H., Sugimoto, K., and Funahashi, S., J. Phys. Chem. (A), 1999, vol. 103, no. 10, p. 1401. https://doi.org/10.1021/jp983799y

    Article  CAS  Google Scholar 

  67. Migliorati, V., Chillemi, G., and D’Angelo, P., Inorg. Chem., 2011, vol. 50, no. 17, p. 8509. https://doi.org/10.1021/ic201100q

    Article  CAS  PubMed  Google Scholar 

  68. Migliorati, V., Zitolo, A., Chillemi, G., and D’Angelo, P., ChemPlusChem., 2012, vol. 77, no. 3, p. 234. https://doi.org/10.1002/cplu.201100070

    Article  CAS  Google Scholar 

  69. Migliorati, V. and D’Angelo, P., Chem. Phys. Lett., 2015, vol. 633, p. 70. https://doi.org/10.1016/j.cplett.2015.05.008

    Article  CAS  Google Scholar 

  70. Libuś, W., Grzybkowski, W., and Pastewski, R., J. Chem. Soc. Faraday Trans., 1981, vol. 77, no. 1, p. 147

    Article  Google Scholar 

  71. Persson, I., Acta Chem. Scand. A, 1982, vol. 36, p. 7.

    Article  Google Scholar 

  72. Zitolo, A. and D’Angelo, P., Chem. Phys. Lett., 2010, vol. 499, nos. 1–3, p. 113. https://doi.org/10.1016/j.cplett.2010.09.034

    Article  CAS  Google Scholar 

  73. Ozutsumi, K., Koide, M., Suzuki, H., and Ishiguro, S., J. Phys. Chem., 1993, vol. 97, no. 2, p. 500. https://doi.org/10.1021/j100104a037

    Article  CAS  Google Scholar 

  74. Ishiguro, S., Umebayashi, Y., and Kanzaki, R., Analyt. Sci., 2004, vol. 20, no. 3, p. 415. https://doi.org/10.2116/analsci.20.415

    Article  CAS  Google Scholar 

  75. Fujii, K., Kumai, T., Takamuku, T., Umebayashi, Y., and Ishiguro, S., J. Phys. Chem. (A), 2006, vol. 110, no. 5, p. 1798. https://doi.org/10.1021/jp054972a

    Article  CAS  Google Scholar 

  76. Umebayashi, Y., Mroz, B., Asada, M., Fujii, K., Matsumoto, K., Mune, Y., Probst, M., and Ishiguro, S., J. Phys. Chem. (A), 2005, vol. 109, no. 21, p. 4862. https://doi.org/10.1021/jp044763a

    Article  CAS  Google Scholar 

  77. Inada, Y., Sugimoto, K., Ozutsumi, K., and Funahashi, S., Inorg. Chem., 1994, vol. 33, no. 9, p. 1875. https://doi.org/10.1021/ic00087a024

    Article  CAS  Google Scholar 

  78. Ozutsumi, K., Abe, Y., Takahashi, R., and Ishiguro, S., J. Phys. Chem., 1994, vol. 98, no. 39, p. 9894. https://doi.org/10.1021/j100090a025

    Article  CAS  Google Scholar 

  79. Sandstrom, M., Persson, I., and Ahrland, S., Acta Chem. Scand. A, 1978, vol. 32, no. 7, p. 607

    Article  Google Scholar 

  80. D’Angelo, P., Chillemi, G., Barone, V., Mancini, G., Sanna, N., and Persson, I., J. Phys. Chem., 2005, vol. 109, no. 18, p. 9178. https://doi.org/10.1021/jp050460k

    Article  CAS  Google Scholar 

  81. Ozutsumi, K., Takamuku, T., Ishiguro, S., and Ohtaki, H., Bull. Chem. Soc. Jap., 1989, vol. 62, no. 6, p. 1875. https://doi.org/10.1246/bcsj.62.1875

    Article  CAS  Google Scholar 

  82. Vchirawongkwin, V., Kritayakornupong, C., and Tongraar, A., J. Mol. Liq., 2011, vol. 163, no. 3, p. 147. https://doi.org/10.1016/j.molliq.2011.08.011

    Article  CAS  Google Scholar 

  83. Migliorati, V. and D’Angelo, P., RSC Adv., 2013, vol. 3, p. 21118. https://doi.org/10.1039/c3ra43412e

    Article  CAS  Google Scholar 

  84. Maliarik, M. and Persson, I., Magn. Reson. Chem., 2005, vol. 43, no. 10, p. 835. https://doi.org/10.1002/mrc.1625

    Article  CAS  PubMed  Google Scholar 

  85. Persson, I., Eriksson L, Lindqvist-Reis P, Persson, P., and Sandström, M., Chemistry, 2008, vol. 14, no. 22, p. 6687. https://doi.org/10.1002/chem.200800225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 3, pp. 474–486 https://doi.org/10.31857/S0044460X21030124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R. Structural Parameters of the Nearest Surrounding of Group II Metal Ions in Oxygen-Containing Solvents. Russ J Gen Chem 91, 429–439 (2021). https://doi.org/10.1134/S1070363221030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221030129

Keywords:

Navigation