Skip to main content
Log in

Mechanisms of the Solid-State Synthesis of Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The formation mechanisms for a series of n = 2 Ruddlesden-Popper phases Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) in the Ln2O3-SrO-Fe2O3 systems were determined. The solid-state synthesis of Ln2SrFe2O7 (Ln = La, Nd) proceeds by a mechanism involving the stage of formation of LnFeO3 and LnSrFeO4 intermediates with their subsequent interaction to form the target product. In the case of Gd2SrFe2O7 formation, two mechanisms are realized, namely, those going through the GdFeO3 + GdSrFeO4 and Gd2O3 + Gd0.5Sr0.5FeO3-α interaction stages. The limiting stage of the Dy2SrFe2O7 formation is the reaction between Dy2O3 and Dy0.5Sr0.5FeO3-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurusinghe, N.N.M., de la Figuera, J., Marco, J.F., Thomas, M.F., Berry, F.J., and Greaves, C., Mater. Res. Bull., 2013, vol. 48, p. 3537. https://doi.org/10.1016/j.materresbull.2013.05.058

    Article  CAS  Google Scholar 

  2. Kamegashira, N., Satoh, H., Meng, Ji., and Mikami, T., J. Alloys Compd., 2004, vol. 374, p. 173. https://doi.org/10.1016/j.jallcom.2003.11.086

    Article  CAS  Google Scholar 

  3. Pacimasree, K.P., Lai, K.Yu, Fuentes, A.F., and Manthiram, A., Int. J.Hydrogen Energy, 2019, vol. 44, no. 3, p. 1896. https://doi.org/10.1016/j.ijhydene.2018.11.129

    Article  Google Scholar 

  4. Kovalenko, A.N. and Tugova, E.A., Nanosystems: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641. https://doi.org/10.17586/2220-8054-2018-9-5-641-662

    CAS  Google Scholar 

  5. Yi, L., Liu, X.Q., Li, L., and Chen, X.M., Int. J. Appl. Ceram. Technol., 2013, vol. 10, p. 177. https://doi.org/10.1111/ijac.12106

    Article  Google Scholar 

  6. Rao, C.N.R. and Raveau, B., Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, New York: Wiley-VCH, 1998, p. 227.

    Google Scholar 

  7. Chupakhina, T.I., Bazuev, G.V., and Zabolotskaya, E.V., Russ. J. Inorg. Chem., 2010, vol. 45, no. 2, p. 247. https://doi.org/10.1134/S0036023610020178

    Article  Google Scholar 

  8. Zvereva, I., Smirnov, Yu., Gusarov, V.V., Popova, V., and Choisnet, J., J. Solid State Sci., 2003, vol. 5, p. 343. https://doi.org/10.1016/S1293-2558(02)00021-3

    Article  CAS  Google Scholar 

  9. Khvostova, L.V., Volkova, N.E., Gavrilova, L.Ya., and Cherepanov, V.A., Mater. Lett., 2018, vol. 213, p. 158. https://doi.org/10.1016/j.matlet.2017.11.041

    Article  CAS  Google Scholar 

  10. Dias, A., Viegas, J.I., and Moreira, R.L., J. Alloys Compd., 2017, vol. 725, p. 77. https://doi.org/10.1016/j.jallcom.2017.07.155

    Article  CAS  Google Scholar 

  11. Fava, J. and Le Flem, G., Mater. Res. Bull., 1975, vol. 10, no. 2, p. 75. https://doi.org/10.1016/0025-5408(75)90123-3

    Article  CAS  Google Scholar 

  12. Feng, J., Wan, Ch., Xiao, B., Zhou, R., Pan, W., and Clarke, D.R., Phys. Rev. B, 2011, vol. 84, p. 024302. https://doi.org/10.1103/PhysRevB.84.024302

    Article  Google Scholar 

  13. Zvereva, I.A., Pylkina, N.S., Popova, V.F., Tugova, E.A., and Gusarov, V.V., Glass Phys. Chem., 2005, vol. 31, no. 6, p. 808. doi https://doi.org/10.1007/s10720-005-0129-2

    Article  CAS  Google Scholar 

  14. Popova, V.F., Tugova, E.A., Gusarov, V.V., and Zvereva, I.A., Glass Phys. Chem., 2004, vol. 30, no. 6, p. 564. https://doi.org/10.1007/s10720-005-0014-z

    Article  CAS  Google Scholar 

  15. Zvereva, I.A., Popova, V.F., Vagapov, D.A., Toikka, A.M., and Gusarov, V.V., Russ. J. Gen. Chem., 2001, vol. 71, no. 8, p. 1181. https://doi.org/10.1023/A:1013248323047

    Article  CAS  Google Scholar 

  16. Zvereva, I.A., Smirnov, Yu.E., and Choisnet, J., Russ. J. Gen. Chem., 2004, vol. 74, no. 5, p. 655. https://doi.org/10.1023/B:RUGC.0000039072.46257.b6

    Article  CAS  Google Scholar 

  17. Zvereva, I.A., Popova, V.F., Missyul, A.V., Toikka, A.M., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 5, p. 684. https://doi.org/10.1023/A:1026162214758

    Article  CAS  Google Scholar 

  18. Liu, B., Liu, X.Q., and Chen, X.M., J. Alloys Compd., 2018, vol. 758, p. 25. https://doi.org/10.1016/j.jallcom.2018.05.117

    Article  CAS  Google Scholar 

  19. Zvereva, I.A., Tugova, E.A., Popova, VF., Silyukov, O.I., and Minich, I.A., Chimica Techno Acta, 2018, vol. 5, no. 1, p. 80. https://doi.org/10.15826/chimtech.2018.5.1.05

    Article  Google Scholar 

  20. Yi, L., Liu, X.Q., and Chen, X.M., Int. J. Appl. Ceram. Technol., 2015, vol. 12, no. 3, p. 33. https://doi.org/10.1111/ijac.12366

    Article  Google Scholar 

  21. Sharma, I.B., Singh, D., and Magotra, S.K., J. Alloys Compd., 1998, vol. 269, p. 13. https://doi.org/S0925-8388(98)00153-4

    Article  CAS  Google Scholar 

  22. Drofenik, M., Kolar, D., and Golic, L., J. Cryst. Growth., 1973, vol. 20, p. 75. https://doi.org/10.1016/0022-0248(73)90042-0

    Article  CAS  Google Scholar 

  23. Samaras, D., Collomb, A., Joubert, J.C., and Bertaut, E.F., J. Solid State Chem., 1975, vol. 12, nos. 1–2, p. 127. https://doi.org/10.1016/0022-4596(75)90188-7

    Article  CAS  Google Scholar 

  24. Joubert, J.C., Samaras, D., Collomb, A., Le Flem, G., and Daoudi, A., Mater. Res. Bull., 1971, vol. 6, p. 341. https://doi.org/10.1016/0025-5408(71)90167-X

    Article  CAS  Google Scholar 

  25. Rakshit, S.K., Parida, S.C., Dash, S., Singh, Z., and Venugopal, V., Thermochim. Acta, 2006, vol. 443, no. 1, p. 98. https://doi.org/10.1016/j.tca.2005.12.020

    Article  CAS  Google Scholar 

  26. Drofenik, M., Hanzel, D., and Zupan, J., Mat. Res. Bull, 1973, vol. 8, p. 1337. https://doi.org/10.1016/0025-5408(73)90017-2

    Article  CAS  Google Scholar 

  27. Aksenova, T.V., Vakhromeeva, A.E., Elkalashy, Sh.I., Urusova, A.S., and Cherepanov, V.A., J. Solid State Chem., 2017, vol. 251, p. 70. https://doi.org/10.1016/j.jssc.2017.04.015

    Article  CAS  Google Scholar 

  28. Zvereva, I.A., Otrepina, I.V., Semenov, V.G., Tugova, E.A., Popova, V.F., and Gusarov, V.V., Russ. J. Gen. Chem., 2007, vol. 77, no. 6, p. 973. https://doi.org/10.1134/S1070363207060011

    Article  CAS  Google Scholar 

  29. Tugova, E.A., Popova, V.F., Zvereva, I.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2007, vol. 7, no. 6, p. 979. https://doi.org/10.1134/S1070363207060023

    Article  Google Scholar 

  30. Tugova, E.A., Popova, V.F., Zvereva, I.A., and Gusarov, V.V., Glass Phys. Chem., 2006, vol. 32, no. 6, p. 674. https://doi.org/10.1134/S1087659606060137

    Article  CAS  Google Scholar 

  31. Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., Volkov, M.P., Pleshakov, I.V., Panchuk, V.V., and Semenov, V.G., Nanosystems: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 676. https://doi.org/10.17586/2220-8054-2018-9-5-676-687

    CAS  Google Scholar 

  32. Morozov, M.I. and Gusarov, V.V., Inorg. Mater., 2002, vol. 38, no. 7, p. 723. https://doi.org/10.1023/a:1016252727831

    Article  CAS  Google Scholar 

  33. Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., and Gusarov, V.V., Inorg. Mater., 2006, vol. 42, no. 2, p. 189. https://doi.org/10.1134/s0020168506020142

    Article  CAS  Google Scholar 

  34. Lomanova, N.A. and Gusarov, V.V., Russ. J. Inorg. Chem., 2011, vol. 56, no. 4, p. 616. https://doi.org/10.1134/s0036023611040188

    Article  CAS  Google Scholar 

  35. Blasco, Ja., Stankiewicz, Jo., and Garcia, Jo., J. Solid State Chem., 2006, vol. 178, p. 898. https://doi.org/10.1016/j.jssc.2005.12.023

    Article  Google Scholar 

  36. Kim, Ch.S., Um, Y.R., Park, S.I., Ji, S.H., Oh, YJ., Park, J.Y., Lee, S.J., and Yo, C.H., IEEE Trans. Magn, 1994, vol. 30, no. 6, p. 4918. https://doi.org/10.1109/20.334265

    Article  CAS  Google Scholar 

  37. Yo, Ch.H., Lee, E.S., and Pyon, M.S., J. Solid State Chem., 1988, vol. 73, p. 411. https://doi.org/10.1016/0022-4596(88)90126-0

    Article  CAS  Google Scholar 

  38. Tugova, E.A., Acta Metallurgica Sinica (Engl. Lett.), 2016, vol. 29, no. 5, p. 450. https://doi.org/10.1007/s40195-016-0407-0

    Article  CAS  Google Scholar 

  39. Tugova, E.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2410. https://doi.org/10.1134/S1070363216110025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is deeply grateful to V.V. Gusarov (Ioffe Institute) for valuable advice and assistance in discussing the results and to A.A. Krasilin (Ioffe Institute) for conducting the electron microscopic studies.

Funding

This study was carried out within state assignment theme no. 9.10 implemented at the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tugova.

Additional information

Conflict of Interest

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 11, pp. 1792–1798.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugova, E.A. Mechanisms of the Solid-State Synthesis of Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases. Russ J Gen Chem 89, 2295–2300 (2019). https://doi.org/10.1134/S1070363219110215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219110215

Keywords

Navigation