Skip to main content
Log in

Synthesis, Antioxidant, and Antibacterial Studies of Zn(II), Cd(II), and Hg(II) Complexes with 3-Formylpyridinethiosemicar bazone and Its N4-Methyl Analogue

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Evaluation of stability constants of the complexes formed in solution by the biologically important ligands and metal ions can aid in understanding the application of metal complexes in chelation therapy. Hence, complexation equilibrium studies of the ligands (L), 3-formylpyridinethiosemicarbazone (H3FPT) and 3-formylpyridine-N4-methylthiosemicarbazone (H3FP4MT) with Zn(II) and Cd(II) metal ions (M) are carried out in 70% v/v DMF-water medium at 0.1M KNO3 ionic strength and the stability constants are determined pH-metrically at 303 K. The binary complexes are formed in 1: 1 (M: L) ratio and are fairly stable. The binary complexes of H3FPT and H3FP4MT (L) with Zn(II), Cd(II) and Hg(II) ions are synthesized and characterized by various analytical and spectral techniques including elemental analysis, molar conductance, LC-MS, TGA, IR and 1H NMR spectroscopy. According to the accumulated information, the complexes are polymeric (ML)n with n > 2, except that of Hg(II)-H3FP4MT, which is ML2. The antioxidant activity of the ligands and their Zn(II) and Hg(II) complexes demonstrate higher activity than their corresponding ligands Cd(II) complexes. Antibacterial activity of the ligands and the complexes is tested against gram positive: Staphylococcus aureus, Bacillus subtilis and gram negative: Escherichia coli and Klebsiella pneumonia bacterial strains. Activity of complexes is determined to be higher than that of the corresponding free ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elsayed, S.A., El-Hendawy, A.M., Mostafa, S.I., and Butler, I.S., Inorg. Chim. Acta., 2010, vol. 363, p. 2526. doi https://doi.org/10.1016/j.ica.2010.04.018

    Article  CAS  Google Scholar 

  2. Pelosi, G., The Open Crystallograph. J., 2010, vol. 3, p. 16. doi https://doi.org/10.2174/1874846501003010016

    Article  CAS  Google Scholar 

  3. Chandra, S., Parmar, S., and Kumar, Y., Bioinorg. Chem. Appl., 2009, Article ID 851316. doi https://doi.org/10.1155/2009/851316

  4. Jain, S.K., Garg, B.S., and Bhoon, Y.K., Spectrochim. Acta. A., 1986, vol. 42, p. 959. doi https://doi.org/10.1016/0584-8539(86)80003-4

    Article  Google Scholar 

  5. Bermejo, E., Castineiras, A., Garcia, I., and West, D.X., Polyhedron., 2003, vol. 22, p. 1147. doi https://doi.org/10.1016/S0277-5387(03)00100-1

    Article  CAS  Google Scholar 

  6. Irving, H.M. and Rossotti, H.S., J. Chem. Soc., 1954, p. 2904. doi https://doi.org/10.1039/JR9540002904

  7. Rakesh, K.M., Kulwinder, K.V., Poonam, A., Rekha, S., and Lobana, T.S., J. Coord. Chem., 2010, vol. 63, p. 1220. doi https://doi.org/10.1080/00958971003735457

    Article  CAS  Google Scholar 

  8. Mydhili, S.P., Sireesha, B., Reddy, Ch.V.R., and Nagarjuna, P.A., Der Pharma Chemica, 2016, vol. 8, p. 138.

    CAS  Google Scholar 

  9. Reddy, G.S., Sireesha, B., Saraladevi, Ch., Mohiuddin, R., Gyanakumari, C., and Ramreddy, M.G., J. Indian. Chem. Soc., 1998, vol. 75, p. 290.

    CAS  Google Scholar 

  10. Vijayarohini, P., Kavitha, G., and Alwar, S.B.S., Der Pharma Chemica, 2017, vol. 9, p. 25.

    CAS  Google Scholar 

  11. Bhargavi, G., Sireesha, B., and Saraladevi, Ch., J. Indian. Chem. Soc., 2002, vol. 79, p. 826.

    CAS  Google Scholar 

  12. Gemechu, Z.B., Kebede, T., Demissie, E.G., Woyessa, G.W., and Kassa, S.B., Afr. J. Pure Appl. Chem., 2015, vol. 9, p. 175. doi https://doi.org/10.5897/AJPAC2015.0636

    Article  CAS  Google Scholar 

  13. Lima, R.L. de., Carneiro, T.M.G., and Beraldo, H., J. Braz. Chem. Soc., 1999, vol. 10, p. 184. doi https://doi.org/10.1590/S0103-50531999000300005

    Article  Google Scholar 

  14. Mendes, I.C., Teixeira, L.R., Lima, R., Carneiro, T.G., and Beraldo, H., Transition. Met. Chem., 1999, vol. 24, p. 655. doi https://doi.org/10.1023/A:1006918604467

    Article  CAS  Google Scholar 

  15. Bermejo, E., Castineiras, A., Garcia, I., and West, D.X., Polyhedron., 2003, vol. 22, p. 1147. doi https://doi.org/10.1016/S0277-5387(03)00100-1

    Article  CAS  Google Scholar 

  16. Ashok, D., Madhuri, E.V.L., Sarasija, M., Sreekanth, S., and Vijjulatha, M., RSC Adv., 2017, vol. 7, p. 25710. doi https://doi.org/10.1039/C7RA01550J

    Article  CAS  Google Scholar 

  17. Ikechukwu, P.E. and Peter, A.A., Molecules, 2015, vol. 20, p. 9788. doi https://doi.org/10.3390/molecules20069788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Venkata Ramana Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mydhili, S.P., Sireesha, B. & Reddy, C.V.R. Synthesis, Antioxidant, and Antibacterial Studies of Zn(II), Cd(II), and Hg(II) Complexes with 3-Formylpyridinethiosemicar bazone and Its N4-Methyl Analogue. Russ J Gen Chem 89, 1015–1022 (2019). https://doi.org/10.1134/S1070363219050232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219050232

Keywords

Navigation