Skip to main content
Log in

Models of molecular structure of heteronuclear clusters Al2Fe3, Al2Co3, and Al2Ni3 according to the data of quantum-chemical density functional simulation

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Geometry parameters of molecular structures of pentaatomic heteronuclear Al2M3 clusters (M = Fe, Co, or Ni) have been simulated using hybrid density functional method (DFT) in the OPBE/TZVP approximation as implemented in GAUSSIAN 09 software. Several structure modifications have been revealed, significantly differing in the stability and geometry parameters: eight for the Al2Fe3 cluster, nine for the Al2Co3 cluster, and seven for the Al2Ni3 cluster. Bond lengths, bond angles, and torsion (dihedral) angles for each of these modifications are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresvyannikov, A.F., Kolpakov, M.E., and Pronina, E.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 10, p. 1901. doi 10.1134/S1070363210100026

    Article  CAS  Google Scholar 

  2. Dresvyannikov, A.F. and Kolpakov, M.E., Protect. Metals., 2008, vol. 44, no. 1, p. 43. doi 10.1134/S0033173208010050

    Article  CAS  Google Scholar 

  3. Dresvyannikov, A.F., Kolpakov, M.E., and Pronina, E.V., Russ. J. Appl. Chem., 2008, vol. 81, no. 11, p. 1879. doi 10.1134/S1070427208110013

    Article  CAS  Google Scholar 

  4. Dresvyannikov, A.F., Kolpakov, M.E., and Mironov, M.M., Inorg. Mater., 2012, vol. 3, no. 3, p. 193. doi 10.1134/S2075113311030075

    Article  Google Scholar 

  5. Schaefer, A., Horn, H., and Ahlrichs, R., J. Chem. Phys., 1992, vol. 97, no. 4, p. 2571. doi 10.1063/1.463096

    Article  CAS  Google Scholar 

  6. Schaefer, A., Horn, H., and Ahlrichs, R., J. Chem. Phys., 1994, vol. 100, no. 8, p. 5829. doi 10.1063/1.467146

    Article  CAS  Google Scholar 

  7. Hoe, W.-M., Cohen, A., ans Handy, N.C., Chem. Phys. Lett., 2001, vol. 341, no. 1, p. 319. doi 10.1016/S0009- 2614(01)00581-4

    Article  CAS  Google Scholar 

  8. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1997, vol. 78, no. 7, p. 396. doi 10.1103/PhysRevLett.78.1396

    Article  Google Scholar 

  9. Paulsen, H., Duelund, L., Winkler, H., Toftlund, H., and Trautwein, A.X., Inorg. Chem., 2001, vol. 40, no. 9, p. 2201. doi 10.1021/ic000954q

    Article  CAS  Google Scholar 

  10. Swart, M., Groenhof, A.R., Ehlers, A.W., and Lammertsma, K., J. Phys. Chem. (A), 2004, vol. 108, no. 25, p. 5479. doi 10.1021/jp049043i

    Article  CAS  Google Scholar 

  11. Swart, M., Ehlers, A.W., and Lammertsma, K., Mol. Phys., 2004, vol. 102, no. 23, p. 2467. doi 10.1080/0026897042000275017

    Article  CAS  Google Scholar 

  12. Swart, M., Inorg. Chim. Acta, 2007, vol. 360, no. 1, p. 179. doi 10.1016/j.ica.2006.07.073

    Article  CAS  Google Scholar 

  13. Frisch, M.J, Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, H., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  14. Chachkov, D.V. and Mikhailov, O.V., Russ. J. Inorg. Chem., 2009, vol. 54, no. 12, p. 1952. doi 10.1134/S0036023609120183

    Article  Google Scholar 

  15. Chachkov, D.V. and Mikhailov, O.V., Russ. J. Inorg. Chem., 2011, vol. 56, no. 2, p. 223. doi 10.1134/S0036023611020057

    Article  CAS  Google Scholar 

  16. Chachkov, D.V. and Mikhailov, O.V., Russ. J. Inorg. Chem., 2011, vol. 56, no. 12, p. 1935. doi 10.1134/S0036023611120308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Mikhailov.

Additional information

Original Russian Text © O.V. Mikhailov, D.V. Chachkov, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 9, pp. 1419–1428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, O.V., Chachkov, D.V. Models of molecular structure of heteronuclear clusters Al2Fe3, Al2Co3, and Al2Ni3 according to the data of quantum-chemical density functional simulation. Russ J Gen Chem 86, 1991–1999 (2016). https://doi.org/10.1134/S1070363216090036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216090036

Keywords

Navigation