Skip to main content
Log in

Oxidation of cyclooctene to suberic acid using perrhenate-containing composite ionic liquids as green catalysts

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of quaternary ammonium perrhenate/3-hexyl-1-methyl-imidazolium hydrogen sulfate ([Hmim]HSO4) composite ionic liquids has been prepared. For the first time, the composite ionic liquids are used both as catalyst and solvent in oxidation of cyclooctene to suberic acid in the presence of hydrogen peroxide as a green oxidant. It was found that organic perrhenate salts play the important role in improving the selectivity of cyclooctene oxidation to suberic acid. The yield of suberic acid under the mild conditions is from good to high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, D.D. and Kemp, D.R., Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz, J.I. and Howe-Grant, M., Eds., New York: Wiley, 1991, vol. 1.

  2. Zeikus, J.G., Jain, M.K., and Elankovan, P., Appl. Micro. Biotech., 1999, vol. 51, p. 545.

    Article  CAS  Google Scholar 

  3. Vyver, S.V. and Román-Leshkov, Y., Catal. Sci. Technol., 2013, vol. 3, p. 1465.

    Article  Google Scholar 

  4. Williamsa, C.K., Chem. Soc. Rev., 2007, vol. 36, p. 1573.

    Article  Google Scholar 

  5. Montzka, S.A., Dlugokencky, E.J., and Butler, J.H., Nature, 2011, vol. 476, p. 43.

    Article  CAS  Google Scholar 

  6. López-Garzón, C.S. and Straathof, A.J.J., Biotechnol. Adv., 2014, vol. 32, p. 873.

    Article  Google Scholar 

  7. Pai, Z.P., Tolstikov, A.G., Berdnikova, P.V., Kustova, G.N., Khlebnikova, T.B., Selivanova, N.V., Shangina, A.B., and Kostrovskii, V.G., Russ. Chem. Bull., 2005, vol. 54, p. 1847.

    Article  CAS  Google Scholar 

  8. US Patent no. 4339536, 1982.

  9. God, Jr, H.C. and Quinn, J.F., J. Am. Chem. Soc., 1956, vol. 78, p.1461.

    Article  Google Scholar 

  10. Ayorinde, F.O., Osman, G., Shepard, R.L., and Powers, F.T., J. Am. Oil Chem. Soc., 1988, vol. 65, p. 1774.

    Article  CAS  Google Scholar 

  11. US Patent no. 2439513, 1948.

  12. Schuchardt, U., Cardoso, D., Sercheli, R., Pereira, R., Da Cruz, R.S., Guerreiro, M.C., Mandelli, D., Spinacé, E.V., and Pires, E.L., Appl. Catal. A: Gen., 2001, vol. 211, p. 1.

    Article  CAS  Google Scholar 

  13. Reimer, R.A., Slaten, C.S., Seapan, M., Lower M.W., and Tomlinson P.E., Environ. Prog., 1994, vol. 13, p. 134.

    Article  CAS  Google Scholar 

  14. Makgwane, P.R. and Ray, S.S., Catal. Commun., 2014, vol. 54, p. 118.

    Article  CAS  Google Scholar 

  15. Zhang, G., Ren, X., Zhang, H., Peng, Y., and Gui, S., Catal. Commun., 2014, vol. 58, p. 59.

    Article  CAS  Google Scholar 

  16. Oguchi, T., Ura, T., Ishii, Y., and Ogawa, M., Chem. Lett., 1989, vol. 18, p. 857.

    Article  Google Scholar 

  17. Jin, P., Zhao, Z., Dai Z., Wei, D., Wei, D., Tang, M., and Wang, X., Catal. Today, 2011, vol. 175, p. 619.

    Article  CAS  Google Scholar 

  18. Sato, K., Aoki, M., and Noyori, R., Science, 1998, vol. 281, p. 1646.

    Article  CAS  Google Scholar 

  19. Noyori, R., Aoki, M., and Sato, K., Chem. Commun., 2003, p. 1977.

    Google Scholar 

  20. Lee, S.-O., Raja, R., Harris, K.D.M., Thomas, J.M., Johnson, B.F.G., and Sankar, G., Angew. Chem. Int. Ed., 2003, vol. 42, p. 1520.

    Article  CAS  Google Scholar 

  21. Jiang, H., Gong, H., Yang, Z., Zhang, X., and Sun, Z., React. Kinet. Catal Lett., 2002, vol. 75, p. 315.

    Article  CAS  Google Scholar 

  22. Deng, Y., Ma, Z., Wang, K., and Chen, J., Green Chem., 1999, vol. 12, p. 275.

    Article  Google Scholar 

  23. Li, H., Ji, M., Lin, H., Shu, H., Xing, F.B., and Chen, M., Chin. J. Appl. Chem., 2003, vol. 20, p. 570.

    CAS  Google Scholar 

  24. Beattie, I.R., and Jones, P.J., Inorg. Chem., 1979, vol. 18, p. 2318.

    Article  CAS  Google Scholar 

  25. Herrmann, W.A., Fischer, R. W., and Marz, D.W., Angew. Chem., 1991, vol. 103, p. 1706

    Article  CAS  Google Scholar 

  26. Herrmann, W.A., Fischer, R. W., and Marz, D.W., Angew. Chem. Int. Ed., 1991, vol. 30, p. 1638.

    Article  Google Scholar 

  27. Jain, K.R. and Kühn, F.E., J. Organomet. Chem., 2007, vol. 692, p. 5532.

    Article  CAS  Google Scholar 

  28. Kühn, F.E., Santos, A.M., and Herrmann, W.A., Dalton Trans., 2005, p. 2483.

    Google Scholar 

  29. Kühn, F.E., Scherbaum, A., and Herrmann, W.A., J. Organomet. Chem., 2004, vol. 689, p. 4149.

    Article  Google Scholar 

  30. Owens, G.S., Arias, J., and Abu-Omar, M.M., Catal. Today, 2000, vol. 55, p. 317.

    Article  CAS  Google Scholar 

  31. Romão, C.C., Kühn, F.E., and Herrmann, W.A., Chem. Rev., 1997, vol. 97, p. 3197.

    Article  Google Scholar 

  32. Jain, K.R. and Kühn, F.E., J. Organomet. Chem., 2007, vol. 692, p. 5532.

    Article  CAS  Google Scholar 

  33. Crucianelli, M., Saladino, R., and Angelis, D.F., Chem. Sus. Chem., 2010, vol. 3, p. 524.

    Article  CAS  Google Scholar 

  34. Welton, T., Chem. Rev., 1999, vol. 99, p. 2071.

    Article  CAS  Google Scholar 

  35. Wasserscheid, P. and Keim, W., Angew. Chem., 2000, no. 112, p. 3926

    Article  Google Scholar 

  36. Wasserscheid, P. and Keim, W., Angew. Chem., Int. Ed., 2000, vol. 39, p. 3772.

    Article  CAS  Google Scholar 

  37. Dupont, J., Souza, R.F., and Suarez, P.A.Z., Chem. Rev., 2002, vol. 102, p. 3667.

    Article  CAS  Google Scholar 

  38. Pârvulescu, V.I. and Hardacre, C., Chem. Rev., 2007, vol. 107, p. 2615.

    Article  Google Scholar 

  39. Plechkova, N.V. and Seddon, K.R., Chem. Soc. Rev., 2008, vol. 37, p. 123.

    Article  CAS  Google Scholar 

  40. Rogers, R.D. and Seddon, K.R., Science, 2003, vol. 302, p. 792.

    Article  Google Scholar 

  41. Markovits, I.I.E., Eger, W.A., Yue, S., Cokoja, M., Münchmeyer, C.J., Zhang, B., Zhou, M.-D., Genest, A., Mink, J., Zang, S.-L., Rösch, N., and Kühn, F.E., Chem. Eur. J., 2013, vol. 19, p. 5972.

    Article  CAS  Google Scholar 

  42. Park, S. and Kazlauskas, R.J., J. Org. Chem., 2001, vol. 66, p. 8395.

    Article  CAS  Google Scholar 

  43. Yang, J.Z, Lu, X.M., Gui, J.S., Xu, W.G., and Li, H.W., J. Chem. Thermodyn., 2005, vol. 37, p. 1250.

    Article  CAS  Google Scholar 

  44. Singh, V., Kaur, S., Sapehiyia, V., Singh, J., and Kad, G.L., Catal. Commun., 2005, vol. 6, p. 57.

    Article  CAS  Google Scholar 

  45. Gowda, N.M.M., Zhang, L., and Barnes, C.L., J. Chem. Crystallogr., 1994, vol. 24, p. 89.

    Article  CAS  Google Scholar 

  46. Sheldrick, G.M., SHELXL97. Program for Crystal Structure Refinement, Germany: University of Gottingen, 1997.

    Google Scholar 

  47. SMART V5.618 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Inc., Madison, WI,1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Zang.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.Y., Zhou, M.D., Yuan, Y.G. et al. Oxidation of cyclooctene to suberic acid using perrhenate-containing composite ionic liquids as green catalysts. Russ J Gen Chem 85, 2378–2385 (2015). https://doi.org/10.1134/S1070363215100254

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215100254

Keywords

Navigation