Skip to main content
Log in

Efficient and convenient catalytic regioselective synthesis of 2-oxazolidinones from CO2 and aziridines over reusable SBA-15 supported hydroxyacetate-functionalized ionic liquid

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A type of mesoporous SBA-15 supported imidazolium functionalized ionic liquids were prepared, characterized and tested as effective and practical catalysts for the synthesis of 2-oxazolidinones by the cycloaddition of CO2 and aziridines. The effects of reaction parameters such as type of catalysts, catalyst amount, CO2 pressure, reaction temperature and catalyst stability have also been investigated in detail, the catalyst SBA-15@DMIL-HOCH2COO exhibited high activity with good yields and excellent regioselectivities. In addition, the catalyst can be easily and effectively recycled for five times with no significant loss in its catalytic activity and selectivity. This work introduces a new, convenient, highly efficient and environmentally friendly pathway to explore the supported ionic liquids for the chemical fixation of carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

References

  1. R. Calmanti, M. Selva, A. Perosa, Tandem catalysis: one-pot synthesis of cyclic organic carbonates from olefins and carbon dioxide. Green Chem. 23, 1921–1941 (2021)

    CAS  Google Scholar 

  2. W. Kong, B. Shen, H. Lyu, J. Kong, J. Ma, Z. Wang, S. Feng, Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. J. Clean. Prod. 292, 125975 (2021)

    CAS  Google Scholar 

  3. N.A. Tappe, R.M. Reich, V. D’Elia, F.E. Kühn, Current advances in the catalytic conversion of carbon dioxide by molecular catalysts: an update. Dalton Trans. 47, 13281–13313 (2018)

    CAS  PubMed  Google Scholar 

  4. L. Guo, K.J. Lamb, M. North, Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem. 23, 77–118 (2021)

    CAS  Google Scholar 

  5. Y. Hu, R.L. Zhang, D. Fang, Quaternary phosphonium cationic ionic liquid/porous metal-organic framework as an efficient catalytic system for cycloaddition of carbon dioxide into cyclic carbonates. Environ. Chem. Lett. 17, 501–508 (2019)

    CAS  Google Scholar 

  6. C.C. Truong, D.K. Mishra, Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts. J. CO2 Util. 41, 101252 (2020)

    CAS  Google Scholar 

  7. H. Salehizadeh, N. Yan, R. Farnood, Recent advances in microbial CO2 fixation and conversion to value-addedproducts. Chem. Eng. J. 390, 124584 (2020)

    CAS  Google Scholar 

  8. T. Zhang, J. Zhong, Z. Wu, Recent advances in catalytic conversion of carbon dioxide to propiolic acids over coinage-metal-based catalysts. J. Energy Chem. 59, 572–580 (2021)

    Google Scholar 

  9. S. Pulla, C.M. Felton, Y. Gartia, P. Ramidi, A. Ghosh, Synthesis of 2-oxazolidinones by direct condensation of 2-aminoalcohols with carbon dioxide using chlorostannoxanes. ACS Sustain. Chem. Eng. 1, 309–312 (2013)

    CAS  Google Scholar 

  10. J.M. Chen, L. Qi, L. Zhang, L.J. Li, C.Y. Hou, W. Li, L.J. Wang, Copper/DTBP-promoted oxyselenation of propargylic amines with diselenides and CO2: synthesis of selenyl 2-oxazolidinones. J. Org. Chem. 85, 10924–10933 (2020)

    CAS  PubMed  Google Scholar 

  11. F. Chen, S. Tao, Q.Q. Deng, D. Wei, N. Liu, B. Dai, Binuclear tridentate hemilabile copper(I) catalysts for utilization of CO2 into oxazolidinones from propargylic amines. J. Org. Chem. 85, 15197–15212 (2020)

    CAS  PubMed  Google Scholar 

  12. Y. Yoshida, T. Endo, Synthesis of multifunctional 4-hydroxymethyl 2-oxazolidinones from glycidyl carbamate derivatives catalyzed by bicyclic guanidine. Tetrahedron Lett. 72, 153086 (2021)

    CAS  Google Scholar 

  13. Y. Wu, G. Liu, Organocatalyzed cycloaddition of carbon dioxide to aziridines. Tetrahedron Lett. 52, 6450–6452 (2011)

    CAS  Google Scholar 

  14. G. Bresciani, S. Zacchini, F. Marchetti, G. Pampaloni, Non-precious metal carbamates as catalysts for the aziridine/CO2 coupling reaction under mild conditions. Dalton Trans. 50, 5351–5359 (2021)

    CAS  PubMed  Google Scholar 

  15. V. Saptal, D.B. Shinde, R. Banerjee, B.M. Bhanage, State-of-the-art catechol porphyrin COF catalyst for chemical fixation of carbon dioxide via cyclic carbonates and oxazolidinones. Catal. Sci. Technol. 6, 6152–6158 (2016)

    CAS  Google Scholar 

  16. C.S. Cao, Y. Shi, H. Xu, B. Zhao, A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr(VI). Dalton Trans. 47, 4545–4553 (2018)

    CAS  PubMed  Google Scholar 

  17. H. Zhou, Y.M. Wang, W.Z. Zhang, J.P. Qu, X.B. Lu, N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem. 13, 644–650 (2011)

    CAS  Google Scholar 

  18. D.B. Nale, S. Rana, K. Parida, B.M. Bhanage, Amine functionalized MCM-41 as a green, efficient, andheterogeneous catalyst for the regioselective synthesis of5-aryl-2-oxazolidinones, from CO2 and aziridines. Appl. Catal. A: Gen. 469, 340–349 (2014)

    CAS  Google Scholar 

  19. G. Bresciani, M. Bortoluzzi, G. Pampaloni, F. Marchetti, Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. Org. Biomol. Chem. (2021). https://doi.org/10.1039/D1OB00458A

    Article  PubMed  Google Scholar 

  20. S. Arayachukiat, P. Yingcharoen, S.V.C. Vummaleti, L. Cavallo, A. Poater, V. D’Elia, Cycloaddition of CO2 to challenging N-tosyl aziridines using a halogen-free niobium complex: catalytic activity and mechanistic insights. Mol. Catal. 443, 280–285 (2017)

    CAS  Google Scholar 

  21. A.C. Kathalikkattil, J. Tharun, R. Roshan, H.G. Soek, D.W. Park, Efficient route for oxazolidinone synthesis using heterogeneous biopolymer catalysts from unactivated alkyl aziridine and CO2 under mild conditions. Appl. Catal. A: Gen. 447–448, 107–114 (2012)

    Google Scholar 

  22. S. Ghosh, T.S. Khan, A. Ghosh, A.H. Chowdhury, M.A. Haider, A. Khan, S.M. Islam, Utility of silver nanoparticles embedded covalent organic frameworks as recyclable catalysts for the sustainable synthesis of cyclic carbamates and 2-oxazolidinones via atmospheric cyclizative CO2 capture. ACS Sustain. Chem. Eng. 8, 5495–5513 (2020)

    CAS  Google Scholar 

  23. O. Nordness, J.F. Brennecke, Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 120, 12873–12902 (2020)

    CAS  PubMed  Google Scholar 

  24. P.N. Reddy, P. Padmaja, B.V.S. Reddy, G. Rambabu, Ionic liquid/water mixture promoted organic transformations. RSC Adv. 5, 51035–51054 (2015)

    CAS  Google Scholar 

  25. H.M.A. Hassan, M.A. Betiha, R.F.M. Elshaarawy, E.A. Ahmed, Facile tailoring of hierarchical mesoporous Al-SBA-15 by ionic liquid and their applications in heterogeneous catalysis. J. Porous Mater. 25, 63–73 (2018)

    CAS  Google Scholar 

  26. A. Yıldırım, An expedient method for kinetically controlled acetonide formation from d-fructose induced by ionic liquid catalyst accompanied with SrCl2·6H2O. Catal. Lett. 150, 2566–2571 (2020)

    Google Scholar 

  27. P. McNeice, P.C. Marr, A.C. Marr, Basic ionic liquids for catalysis: the road to greater stability. Catal. Sci. Technol. 11, 726–741 (2021)

    CAS  Google Scholar 

  28. Y. Chen, R. Luo, Z. Yang, X. Zhou, H. Ji, Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO2 into five-membered heterocyclic molecules. Sustain. Energy Fuels 2, 125–132 (2018)

    CAS  Google Scholar 

  29. Y.N. Zhao, Z.Z. Yang, S.H. Luo, L.N. He, Design of task-specific ionic liquids for catalytic conversion of CO2 with aziridines under mild conditions. Catal. Today 200, 2–8 (2013)

    CAS  Google Scholar 

  30. Z.Z. Yang, L.N. He, S.Y. Peng, A.H. Liu, Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Green Chem. 12, 1850–1854 (2010)

    CAS  Google Scholar 

  31. P. Virtanen, E. Salminen, J.P. Mikkola, Modeling of supported ionic liquid catalysts systems-from idea to applications. Ind. Eng. Chem. Res. 56, 12852–12862 (2017)

    CAS  Google Scholar 

  32. R. Gupta, M. Yadav, R. Gaur, G. Arora, P. Yadav, R.K. Sharma, Magnetically supported ionic liquids: a sustainable catalytic route for organic transformations. Mater. Horiz. 7, 3097–3130 (2020)

    CAS  Google Scholar 

  33. S. Askari, M. Jafarzadeh, D.B. Christensen, S. Kegnæs, A synergic activity of urea/butyl imidazolium ionic liquid supported on UiO-66-NH2 metal–organic framework for synthesis of oximes. Catal. Lett. 150, 3159–3173 (2020)

    CAS  Google Scholar 

  34. R. Fehrmann, A. Riisager, M. Haumann, Supported Ionic Liquids: Fundamentals and Applications (Wiley-VCH Verlag, Weinheim, 2014)

    Google Scholar 

  35. E. Peris, R. Porcar, M.I. Burguete, E. García-Verdugo, S.V. Luis, Supported ionic liquid-like phases (SILLPs) as immobilised catalysts for the multistep and multicatalytic continuous flow synthesis of chiral cyanohydrins. ChemCatChem 11, 1955–1962 (2019)

    CAS  Google Scholar 

  36. B. Sandig, L. Michalek, S. Vlahovic, M. Antonovici, B. Hauer, M.R. Buchmeiser, A monolithic hybrid cellulose-2.5-acetate/polymer bioreactor for biocatalysis under continuous liquid-liquid conditions using a supported ionic liquid phase. Chem. Eur. J. 21, 15835–15842 (2015)

    CAS  PubMed  Google Scholar 

  37. N. Mohamed, Preparation and characterization of silver mesoporous silica nanoshells with promising antibacterial activity. J. Porous Mater. 27, 1277–1285 (2020)

    CAS  Google Scholar 

  38. P. Verma, Y. Kuwahara, K. Mori, R. Raja, H. Yamashita, Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale 12, 11333–11363 (2020)

    CAS  PubMed  Google Scholar 

  39. S. Sadjadi, M.M. Heravi, Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: state of the art. RSC Adv. 7, 30815–30838 (2017)

    CAS  Google Scholar 

  40. I. Hierro, S. Gómez-Ruiz, Y. Pérez, P. Cruz, S. Prashar, M. Fajardo, Mesoporous SBA-15 modified with titanocene complexes and ionic liquids: interactions with DNA and other molecules of biological interest studied by solid state electrochemical techniques. Dalton Trans. 47, 12914–12932 (2018)

    PubMed  Google Scholar 

  41. P. Chawdhury, K.V.S.S. Bhargavi, M. Selvaraj, C. Subrahmanyam, Promising catalytic activity by non-thermal plasma synthesized SBA-15-supported metal catalysts in one-step plasma-catalytic methane conversion to value-added fuels. Catal. Sci. Technol. 10, 5566–5578 (2020)

    CAS  Google Scholar 

  42. X. Sheng, Y. Zhou, Y. Yang, Y. Zhang, Z. Zhang, S. Zhou, X. Fu, S. Zhao, Synthesis of immobilized heteropolyanion-based ionic liquids on mesoporous silica SBA-15 as a heterogeneous catalyst for alkylation. RSC Adv. 4, 30697–30703 (2014)

    CAS  Google Scholar 

  43. Z. Dokhaee, M. Ghiaci, H. Farrokhpour, G. Buntkowsky, H. Breitzke, SBA-15-supported imidazolium ionic liquid through different linkers as a sustainable catalyst for the synthesis of cyclic carbonates: a kinetic study and theoretical DFT calculations. Ind. Eng. Chem. Res. 59, 12632–12644 (2020)

    CAS  Google Scholar 

  44. T. Perumal, V.L. Mangesh, S.K. Perumal, R. Arumugam, N. Subramanian, S. Subramanian, S. Kannan, Isomerization of alkanes over ionic liquids supported on SBA-15. Energy Fuels 34, 14620–14632 (2020)

    CAS  Google Scholar 

  45. J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, A new V2O5–MoO3–TiO2–SO42− nanostructured aerogel catalyst for diesel DeNOx technology. New J. Chem 44, 16119–16134 (2020)

    CAS  Google Scholar 

  46. J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, New CeO2–TiO2, WO3–TiO2 and WO3–CeO2–TiO2 mesoporous aerogel catalysts for the low temperature selective catalytic reduction of NO by NH3. J. Porous Mater. (2021). https://doi.org/10.1007/s10934-021-01102-3

    Article  Google Scholar 

  47. J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, Promotional effect of ceria on the catalytic behaviour of new V2O5–WO3–TiO2 aerogel solids for the DeNOx process. J. Solid State Chem. 300, 122261 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Research Foundation of Yichang Science and Technology Bureau (A21-3-009), 111 Project (D20015) and analysis and testing center of China Three Gorges University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin Hu.

Ethics declarations

Conflict of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, C. & Hu, Y.L. Efficient and convenient catalytic regioselective synthesis of 2-oxazolidinones from CO2 and aziridines over reusable SBA-15 supported hydroxyacetate-functionalized ionic liquid. J Porous Mater 29, 131–142 (2022). https://doi.org/10.1007/s10934-021-01153-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01153-6

Keywords

Navigation