Skip to main content
Log in

Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

We synthesized nanoparticles of variable composition based on zirconium dioxide in the ZrO2-Y2O3 (or Gd2O3)-H2O systems under hydrothermal conditions. By X-ray diffraction and small-angle X-ray scattering studies revealed that the nanoparticles consist of crystalline core and amorphous shell. Increase of Y2O3 (or Gd2O3) content yields increases of shell size and decreases of core size. The effect is due to suppressed ZrO2 crystallites growth caused by development of the shell preventing zirconium ions transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, H.C., Ahn, H., Jung, Y.M., Lee, M.K., Shin, H.J., Kim, S.B., and Sung, Y., Appl. Spectrosc., 2004, vol. 58, no. 5, p. 598. DOI: 10.1366/000370204774103435.

    Article  CAS  Google Scholar 

  2. Ding, X.-Z. and Liu, X.-H., J. Mater. Res., 1998, vol. 13, no. 9, p. 2556. DOI: 10.1557/JMR.1998.0356.

    Article  CAS  Google Scholar 

  3. Barnard, A.S., Zapol, P., and Curtiss, L.A., J. Chem. Theor. Comput., 2005, vol. 1, p. 107. DOI: 10.1021/ct0499635.

    Article  Google Scholar 

  4. Gribb, A.A. and Banfield, J.F., Am. Mineralogist., 1997, vol. 82, p. 717. DOI: 0003-004X/97/0708-0717$05.00.

    CAS  Google Scholar 

  5. Pyda, W., Haberko, K., and Bucko, M., J. Chem. Soc., 1991, vol. 74, no. 10, p. 2622.

    CAS  Google Scholar 

  6. Mondal, A. and Ram, S., Ceram. Int., 2004, vol. 30, no. 2, p. 239. DOI: 10.1016/S0272-8842(03)00095-6.

    Article  CAS  Google Scholar 

  7. Davar, F., Hassankhani, A., and Loghman-Estarki, M.R., Ceram. Int., 2013, vol. 39, no. 3, p. 2933. DOI: 10.1016/j.ceramint.2012.09.067.

    Article  CAS  Google Scholar 

  8. Zenga, Y., Lee, S.W., and Dinga, C.X., Mater. Lett., 2002, vol. 57, p. 495. DOI: 10.1016/S0167-577X(02) 00818-2.

    Article  Google Scholar 

  9. Levin, I. and Brandon, D., J. Am. Ceram. Soc., 1998, vol. 81, no. 8, p. 1995. DOI: 10.1111/j.1151-2916.1998.tb02581.x.

    Article  CAS  Google Scholar 

  10. Dell’Agli, G. and Mascolo, G., J. Eur. Ceram. Soc., 2000, vol. 20, p. 139. DOI: 10.1016/S0955-2219(99) 00151-X.

    Article  Google Scholar 

  11. Jang, J.-W., Kim, H.-K., and Lee, D.-Y., Mater. Lett., 2004, vol. 58, p. 1160. DOI: 10.1016/j.matlet.2003.08.038.

    Article  CAS  Google Scholar 

  12. Feighery, A.J., Irvine, J.T.S., and Zheng, C., J. Solid State Chem., 2001, vol. 160, p. 302. DOI: 10.1006/jssc.2001.9201.

    Article  CAS  Google Scholar 

  13. Fabregas, I.O., Craievich, A.F., Fantini, M.C.A., Millen, R.P., Temperini, M.L.A, and Lamas, D.G., J. Alloys Com= pounds, 2011, vol. 509, p. 5177. DOI: 10.1016/j.jallcom.2011.01.213.

    Article  CAS  Google Scholar 

  14. Reyes-Rojas, A., Esparza-Ponce, H., De la Torre, S.D., and Torres-Moye, E., Mater. Chem. Phys., 2009, vol. 114, p. 756. DOI: 10.1016/j.matchemphys.2008.10.044.

    Article  CAS  Google Scholar 

  15. Fagg, D.P., Frade, J.R., Mogensen, M., and Irvine, J.T.S., J. Solid State Chem., 2007, vol. 180, p. 2371. DOI: 10.1111/j.1151-2916.1989.tb07663.x.

    Article  CAS  Google Scholar 

  16. Kim, D.-J., J. Am. Ceram. Soc., 1989, vol. 72, p. 1415. DOI: 10.1111/j.1151-2916.1989.tb07663.x.

    Article  CAS  Google Scholar 

  17. Komlev, A.A. and Velizhaninov, E.F., Russ. J. Appl. Chem., 2013, vol. 86, no. 9, p. 1373. DOI: 10.1134/S1070427213090059.

    Article  Google Scholar 

  18. Artamonova, O.V., Almjasheva, O.V., Mittova, I.Ya., and Gusarov, V.V., Inorg. Mater., 2006, vol. 42, no. 10, p. 1072. DOI: 10.1134/S0020168506100049.

    Article  CAS  Google Scholar 

  19. Artamonova, O.V., Almjasheva, O.V., Mittova, I.Ya., and Gusarov, V.V., Perspektiv. Mater., 2009, no. 1, p. 91.

    Google Scholar 

  20. Tomkovich, M.V., Andrievskaya E.P., and Gusarov, V.V., Nanosistemy: Fiz., Khim., Matem., 2011, vol. 2, no. 2, p. 6

    Google Scholar 

  21. Almjasheva, O.V., Gusarov, V.V., Alitinform. Mezhdunarod. Analit. Obozr., 2009, nos. 4–5 (11), p. 12.

    Google Scholar 

  22. Li, S., Izui, H., Okano, M., Zhang, W., and Watanabe, T., Particuology, 2012, vol. 10, no. 3, p. 345. DOI: 10.1016/j.partic.2011.05.002.

    Article  CAS  Google Scholar 

  23. Ye, Y., Li, J., and Zhou, H., and Chen, J., Ceram. Int., 2008, vol. 34, no. 8, p. 1797. DOI: 10.1016/j.ceramint.2007.06.005.

    Article  CAS  Google Scholar 

  24. Muccillo, E.N.S, Rocha, R.A., and Muccillo, R., Mater. Lett., 2002, vol. 53, no. 4–5, p. 353. DOI: 10.1016/S0167-577X(01)00506-7.

    Article  CAS  Google Scholar 

  25. Zhang, H., Lu, H., Zhu, Y., Li, F., Duan, R., Zhang, M., and Wang, X., Powder Technol., 2012, vol. 227, p. 9. DOI: 10.1016/j.powtec.2012.02.007.

    Article  CAS  Google Scholar 

  26. Yudin, V.E., Otaigbe, J.U., Svetlichnyi, V.M., Korytkova, E.N., Almjasheva, O.V., and Gusarov, V.V., Express Polym. Lett., 2008, vol. 2, no. 7, p. 485. DOI: 10.3144/expresspolymlett.2008.58.

    Article  CAS  Google Scholar 

  27. Almjasheva, O.V., Postnov A.Yu., Mal’tseva, N.V., and Vlasov E.A., Nanosistemy: Fiz., Khim., Matem., 2012, vol. 3, no. 6, p. 7

    Google Scholar 

  28. Gil’, D.O., Dolgopolova, E.A., Shekunova, T.O., Sadovnikov, A.A., Ivanova, O.S., Ivanov, V.K., and Tret’yakov, Yu.D., Nanosistemy: Fiz., Khim., Matem., 2013, vol. 4, no. 1, p. 7

    Google Scholar 

  29. Al’myasheva, O.V., Vlasov, E.A., Khabenskii, V.B., and Gusarov, V.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 2, p. 217. DOI: 10.1134/S1070427209020104.

    Article  Google Scholar 

  30. Liao, J., Zhou, D., Yang, B., Liu, R., and Zhang, Q., Opt. Mater., 2012, vol. 35, no. 2, p. 274. DOI: 10.1016/j.optmat.2012.08. 016.

    Article  CAS  Google Scholar 

  31. Almjasheva, O.V., Candidate Sci. (Chem.) Dissertation, St. Petersburg, 2007.

    Google Scholar 

  32. Rivera, T., Sosa, R., Azorín, J., Zarate, J., and Ceja, A., Rad. Measur., 2010, vol. 45, nos. 3–6, p. 465. DOI: 10.1016/j.radmeas.2010.01.046.

    Article  CAS  Google Scholar 

  33. Spivak, N.Ya., Nosenko, N.D., Zholobal, N.M., Shcherbakov, A.B., Reznikov, A.G., Ivanova, O.S., Ivanov, V.K., and Tret’yakov, Yu.D., Nanosistemy: Fiz., Khim., Matem., 2013, vol. 4, no. 1, p. 72.

    CAS  Google Scholar 

  34. Katamura, J., Seki, T., and Sakuma, T., J. Phase Equil., 1995, vol. 16, no. 4, p. 315. DOI: 10.1007/BF02645287.

    Article  CAS  Google Scholar 

  35. Shafer, M.W. and Roy, R., J. Am. Ceram. Soc., 1959, vol. 42, no. 11, p. 563. DOI: 10.1111/j.1151-2916.1959.tb13574.x.

    Article  CAS  Google Scholar 

  36. Shannon, R.D., Acta Crystallogr. (A), 1976, vol. 32, no. 5, p. 751. DOI: 10.1107/S0567739476001551.

    Article  Google Scholar 

  37. Tareen, J.A.K. and Kutty, T.R.N., Proc. Ind. Acad. Sci. (A), 1980, vol. 89, no. 3, p. 277.

    CAS  Google Scholar 

  38. Dinh Van Tac, Mittova, V.O., Almjasheva, O.V., and Mittova, I.Ya., Inorg. Mater., 2011, vol. 47, no. 10, p. 1141. DOI: 10.1134/S0020168511100037.

    Article  Google Scholar 

  39. Cheng, Z., Cui, Y., and Yang, H., J. Nanopart. Res., 2009, vol. 11, no. 5, p. 1185. DOI: 10.1007/s11051-008-9501-1.

    Article  CAS  Google Scholar 

  40. Pozhidaeva, O.V., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Russ. J. Gen. Chem., 1999, vol. 69, no. 8, p. 1219.

    CAS  Google Scholar 

  41. Guinier, A. and Fournet, G., Small-Angle Scattering of X-Rays, New York: Wiley, 1955.

    Google Scholar 

  42. Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, p. 849. DOI: 10.1023/A:1020409702215.

    Article  CAS  Google Scholar 

  43. Almjasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Nanosistemy: Fiz., Khim., Matem., 2010, vol. 1, no. 1, p. 26.

    Google Scholar 

  44. Kuchko, A.B. and Smirnov, A.V., Nanosistemy: Fiz., Khim., Matem., 2012, vol. 3, no. 3. C. 76

    Google Scholar 

  45. Plavnik, G.M., Kristallograf., 1984, vol. 29, no. 2, p. 210.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Almjasheva.

Additional information

Original Russian Text © O.V. Almjasheva, A.V. Smirnov, B.A. Fedorov, M.V. Tomkovich, V.V. Gusarov, 2014, published in Zhurnal Obshchei Khimii, 2014, Vol. 84, No. 5, pp. 711–716.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almjasheva, O.V., Smirnov, A.V., Fedorov, B.A. et al. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russ J Gen Chem 84, 804–809 (2014). https://doi.org/10.1134/S1070363214050028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363214050028

Keywords

Navigation