Advertisement

Russian Journal of General Chemistry

, Volume 83, Issue 10, pp 1808–1814 | Cite as

Features of the sol-gel process of formation of nanostructured gadolinium oxide

  • V. V. Bakovets
  • L. N. Trushnikova
  • P. E. Plyusnin
  • I. V. Korolkov
  • I. P. Dolgovesova
  • T. D. Pivovarova
  • S. A. Savintseva
Article

Abstract

The process of dehydration of Gd(OH)3·nH2O obtained by the sol-gel method from a solution of Gd(NO3)3, to Gd2O3 in the temperature range of 50–700°C was explored. The hydrogel and Gd2O3 structurization is shown to depend on the additives (AF-12 and 2-propanol). The final average particle size of Gd2O3 after annealing at 700°C is 20±2 nm, depending on the conditions of the synthesis. The resulting oxide particles are larger than the particles of yttrium oxide Y2O3 (17±2) obtained under the same conditions of the process due to the higher basicity of gadolinium and its higher coordination number with respect to the OH groups. This promotes the formation of crystalline phases of Gd(OH)3 at lower temperature, 50–250°C, while maintaining a favorable structural short-range order in passing through an amorphous state to a crystalline Gd2O3.

Keywords

Surfactant Gadolinium General Chemistry Yttrium Oxide Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rossner, W., Bödinger, H., Leppert, J., and Grabmaier, B.C., IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 4, part 1–2, p. 376.CrossRefGoogle Scholar
  2. 2.
    Li-Zhou, Wei Wang, Jun-Li Huang, Qi Pang, Ling-Hong Yi, Meng-Lian Gong, and Jian-Xin, Optik., 2010, vol. 121, p. 1516.CrossRefGoogle Scholar
  3. 3.
    Kim, E.J., Kang, Y.C, Park, H.D., and Ryu, S.K., Mater. Res. Bull., 2003, vol. 38, no. 3, p. 515.CrossRefGoogle Scholar
  4. 4.
    Hai Guo, Xudong Yang, Teng Xiao, Weiping Zhang, Liren Lou, Jacques Mugnier, Appl. Surf. Sci., 2004, vol. 230, p. 215.CrossRefGoogle Scholar
  5. 5.
    Bakovets, V.V., Trushnikova, L.N., Korol’kov I.V., Plyusnin, P.E., Dolgovesova, I.P., Pivovarova, T.D., and Alferova, N.I., Russ. J. Gen. Chem., 2013, vol. 83, no. 1, p. 1.CrossRefGoogle Scholar
  6. 6.
    Serebrennikov, V.V., Khimiya redkozemel’nykh elementov (Chemistry of Rare Earth Elements), Tomsk: Tomsk. Gos. Univ., 1959, vol. 1.Google Scholar
  7. 7.
    Soedineniya redkozemel’nykh elementov. Karbonaty. Oksalaty. Nitraty. Titanaty. Ser. Khimiya redkikh elementov (Compounds of Rare Earth Elements. Carbonates. Oxalates. Nitrates. Titanates. Ser. Chemistry of Rare Elements), Moscow: Nauka. 1984.Google Scholar
  8. 8.
    Beall, G.W., Milligan, W.O., and Wolcott, H.A., J. Inorg. Nuclear Chem., 1977, vol. 39, no. 1, p. 65.CrossRefGoogle Scholar
  9. 9.
    Karagedov, G.R. and Lyakhov, N.Z., Khimiya v interesakh ustoichivogo razvitiya, 1999, vol. 7, no. 3, p. 229.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Bakovets
    • 1
  • L. N. Trushnikova
    • 1
  • P. E. Plyusnin
    • 1
  • I. V. Korolkov
    • 1
  • I. P. Dolgovesova
    • 1
  • T. D. Pivovarova
    • 1
  • S. A. Savintseva
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations