Skip to main content
Log in

Mechanism of the Grignard reaction in terms of the cluster model of reaction center. A quantum-chemical study

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Most probable paths of the classical Grignard reaction between ethyl bromide and Mg31 cluster simulating the reaction center on the surface of metallic magnesium were analyzed in terms of the density functional theory [B3PW91/6-31G(d)]. Principal thermodynamic parameters of the radical reaction path, including the energy of adsorption of oxidant molecules on the cluster, the energy of formation of ethyl radicals, and the energy of their subsequent interaction with the surface, were calculated. The structure corresponding to the true transition state of the Grignard reaction was identified. The low energy of activation of the reaction occurring at the phase boundary (5.1 kcal/mol) indicated that the surface reaction of radical formation cannot be rate-determining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavrent’ev, I.P. and Khidekel’, M.L., Usp. Khim., 1983, vol. 52, no. 4, p. 596.

    Google Scholar 

  2. Garnovskii, A.O., Kharisov, V.I., Gokhon-Zorrilla, T., and Garnovskii, D.A., Usp. Khim., 1995, vol. 64, no. 3, p. 215.

    Article  CAS  Google Scholar 

  3. Pryamoi sintez koordinatsionnykh soedinenii (Direct Synthesis of Coordination Compounds), Skopenko, V.V., Kiev: Venturi, 1997.

    Google Scholar 

  4. Maslennikov, S.V., Doctoral (Chem.) Dissertation, Nizhni Novgorod, 2005.

  5. Piskunov, A.V., Maslennikov, S.V., Spirina, I.V., and Maslennikov, V.P., Koord. Khim., 2002, vol. 28, no. 11, p. 861.

    Google Scholar 

  6. Root, K.S., Hill, C.L., Lawrence, L.M., and Whitesides, G.M., J. Am. Chem. Soc., 1989, vol. 111, no. 3, p. 5405.

    Article  CAS  Google Scholar 

  7. Hamdouchi, C. and Walborsky, H.M., Handbook of Grignard Reagents, New York: Marcel Dekker, 1996, p. 145.

    Google Scholar 

  8. Garst, J.F. and Ungváry, F., Grignard Reagents: New Developments, Chichester: Wiley, 2000, p. 185.

    Google Scholar 

  9. Kharasch, M.S. and Reinmuth, O., Grignard Reactions of Non-Metallic Substances, New York: Prentice-Hall, 1954.

    Google Scholar 

  10. Walborsky, H.M., Acc. Chem. Res., 1990, vol. 23, no. 1, p. 286.

    Article  CAS  Google Scholar 

  11. Walborsky, H.M. and Zimmermann, Ch., J. Am. Chem. Soc., 1992, vol. 114, no. 13, p. 4996.

    Article  CAS  Google Scholar 

  12. Garst, J.F. and Swift, B.L., J. Am. Chem. Soc., 1989, vol. 111, no. 1, p. 241.

    Article  CAS  Google Scholar 

  13. Garst, J.F., Swift, B.L., and Smith, D.W., J. Am. Chem. Soc., 1989, vol. 111, no. 1, p. 234.

    Article  CAS  Google Scholar 

  14. Garst, J.F., Ungváry, F., and Baxter, J.T., J. Am. Chem. Soc., 1997, vol. 119, no. 1, p. 253.

    Article  CAS  Google Scholar 

  15. Garst, J.F., Boone, J.R., Webb, L., Lawrence, K.E., Baxter, J.T., and Ungváry, F., Inorg. Chim. Acta, 1999, vol. 296, no. 1, p. 52.

    Article  CAS  Google Scholar 

  16. Garst, J.F. and Soriaga, M.P., Coord. Chem. Rev., 2004, vol. 248, no. 7, p. 623.

    Article  CAS  Google Scholar 

  17. Panteleev, S.V., Ignatov, S.K., Maslennikov, S.V., and Spirina, I.V., Vestn. Nizhegorod. Univ., 2011, no. 4, p. 107.

  18. Panteleev, S.V., Ignatov, S.K., Maslennikov, S.V., Razuvaev, A.G., and Spirina, I.V., Vestn. Nizhegorod. Univ., 2010, no. 6, p. 88.

  19. Davis, S.R., J. Am. Chem. Soc., 1991, vol. 113, no. 8, p. 4145.

    Article  CAS  Google Scholar 

  20. Liu, L. and Davis, S.R., J. Phys. Chem., 1991, vol. 95, no. 22, p. 8619.

    Article  CAS  Google Scholar 

  21. Tulub, A.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, p. 886.

    Article  CAS  Google Scholar 

  22. Porsev, V.V. and Tulub, A.V., Dokl. Ross. Akad. Nauk, 2006, vol. 409, no. 5, p. 634.

    Google Scholar 

  23. Porsev, V.V. and Tulub, A.V., Dokl. Ross. Akad. Nauk, 2008, vol. 419, no. 1, p. 71.

    Google Scholar 

  24. Panteleev, S.V., Ignatov, S.K., and Maslennikov, S.V., Izv. Ross. Akad. Nauk, Ser. Khim., 2008, no. 3, p. 458.

  25. Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon, 1978.

    Google Scholar 

  26. Nechaev, E.A., Khemosorbtsiya organicheskikh veshchestv na oksidakh i metallakh (Chemisorption of Organic Substances on Oxides and Metals), Khar’kov: Vysshaya Shkola, 1989.

    Google Scholar 

  27. Nefëdov, V.I. and Vovna, V.I., Elektronnaya struktura organicheskikh i elementoorganicheskikh soedinenii (Electronic Structure of Organic and Organoelement Compounds), Moscow: Nauka, 1989.

    Google Scholar 

  28. Maslennikov, S.V., Spirina, I.V., Piskunov, A.V., and Maslennikova, S.N., Russ. J. Gen. Chem., 2001, vol. 71, no. 11, p. 1741.

    Article  CAS  Google Scholar 

  29. Zakharkin, L.I., Okhlobystin, O Yu., and Strunin, B.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1961, no. 12, p. 2254.

  30. Zakharkin, L.I. and Okhlobystin, O.Yu., Izv. Akad. Nauk SSSR, Ser. Khim., 1963, no. 1, p. 193.

  31. Markis, P.R., Akkerman, O.S., and Bickelhaupt, F., Organometallics, 1994, vol. 13, no. 12, p. 2616.

    Article  Google Scholar 

  32. Hill, C.L., Vander Sande, J.B., and Whitesides, G.M., J. Org. Chem., 1980, vol. 45, no. 6, p. 1020.

    Article  CAS  Google Scholar 

  33. Koon, S.E., Oyler, C.E., Hill, J.H., and Bowyer, W.J., J. Org. Chem., 1993, vol. 58, no. 12, p. 3225.

    Article  CAS  Google Scholar 

  34. Kondin, A.V., Cand. Sci. (Chem.) Dissertation, Nizhni Novgorod, 1990.

  35. Teerlinck, C.E. and Bowyer, W.J., J. Org. Chem., 1996, vol. 61, no. 3, p. 1059.

    Article  CAS  Google Scholar 

  36. Jasien, P.G. and Abbondondola, J.A., J. Mol. Struct. (Theochem), 2004, vol. 671, no. 2, p. 111.

    Article  CAS  Google Scholar 

  37. Nuzzo, R.G. and Dubois, L.H., J. Am. Chem. Soc., 1986, vol. 108, no. 11, p. 2881.

    Article  CAS  Google Scholar 

  38. Lin, J.-L. and Bent, B.E., J. Phys. Chem., 1992, vol. 96, no. 21, p. 8529.

    Article  CAS  Google Scholar 

  39. Lin, J.-L. and Bent, B.E., J. Am. Chem. Soc., 1993, vol. 115, no. 7, p. 2849.

    Article  CAS  Google Scholar 

  40. Sergeev, G.B., Smirnov, V.V., and Badaev, F.Z., J. Organomet. Chem., 1982, vol. 224, no. 1, p. 29.

    Article  Google Scholar 

  41. Sergeev, G.B., Smirnov, V.V., and Badaev, F.Z., J. Organomet. Chem., 1993, vol. 243, no. 1, p. 123.

    Article  Google Scholar 

  42. Beals, B.J., Bello, Z.I., Cuddihy, K.P., Healy, E.M., Koon-Church, S.E., Owens, J.M., Teerlinck, C.E., and Bowyer, W.J., J. Phys. Chem. A, 2002, vol. 106, no. 6, p. 498.

    Article  CAS  Google Scholar 

  43. Köhn, A., Weigend, F., and Ahlrichs, R., Phys. Chem. Chem. Phys., 2001, vol. 5, no. 4, p. 711.

    Article  Google Scholar 

  44. Jellinek, J. and Acioli, P.H., J. Phys. Chem. A, 2002, vol. 106, no. 45, p. 10 919.

    Article  CAS  Google Scholar 

  45. Lyalin, A., Solov’yov, I.A., Solov’yov, A.V., and Greiner, W., Phys. Rev. A, 2003, vol. 67, no. 1, p. 84.

    Google Scholar 

  46. Solov’yov, I.A., Solov’yov, A.V., and Greiner, W., J. Phys. B, 2004, vol. 37, no. 7, p. L137.

    Article  Google Scholar 

  47. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian 09, Revision A.01, Wallingford CT: Gaussian, 2009.

    Google Scholar 

  48. Ignatov, S.K., MOLTRAN — programma dlya vizualizatsii molekulyarnykh dannykh i rascheta termodinamicheskikh parametrov (MOLTRAN. A Program for Visualization of Molecular Data and Calculation of Thermodynamic Parameters), Nighegorod. Gos. Univ., 2005; http://ichem.unn.ru/Moltran

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ignatov.

Additional information

Original Russian Text © S.K. Ignatov, S.V. Panteleev, S.V. Maslennikov, I.V. Spirina, 2012, published in Zhurnal Obshchei Khimii, 2012, Vol. 82, No. 12, pp. 1999–2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatov, S.K., Panteleev, S.V., Maslennikov, S.V. et al. Mechanism of the Grignard reaction in terms of the cluster model of reaction center. A quantum-chemical study. Russ J Gen Chem 82, 1954–1961 (2012). https://doi.org/10.1134/S1070363212120080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120080

Keywords

Navigation