Skip to main content
Log in

Role of size-dependent effects and interfaces in physicochemical properties of consolidated nanomaterials

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The major distinctive features of size-dependent effects in nanomaterials were specified. The surface energy, melting temperature, phase equilibria, phonon spectrum, electronic structure, and conductivity type were analyzed in relation to the crystallite size for consolidated nanomaterials based on metals, alloys, intermetallics, carbides, borides, nitrides, oxides, and semiconductors. The interface effects in physicochemical properties of nanomaterials were highlighted. Special attention was given to little studied issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievskii, R.A. and Glezer, A.M., Fiz. Met. Metalloved., 1999, vol. 88, no. 1, pp. 50–73.

    CAS  Google Scholar 

  2. Andrievskii, R.A. and Glezer, A.M., Fiz. Met. Metalloved., 2000, vol. 89, no. 1, pp. 91–112.

    CAS  Google Scholar 

  3. Roldugin, V.I., Usp. Khim., 2000, vol. 69, no. 10, pp. 889–922.

    Google Scholar 

  4. Summ, B.D. and Ivanova, N.I., Usp. Khim., 2000, vol. 69, no. 11, pp. 995–1008.

    Google Scholar 

  5. Uvarov, N.F. and Boldyrev, V.V., Usp. Khim., 2001, vol. 70, no. 4, pp. 307–329.

    Google Scholar 

  6. Petrii, O.A. and Tsirlina, G.A., Usp. Khim., 2001, vol. 70, no. 4, pp. 330–344.

    Google Scholar 

  7. Andrievski, R.A. and Glezer, A.M., Scr. Mater., 2001, vol. 44, p. 1621–1625.

    Article  CAS  Google Scholar 

  8. Weissmüller, J., in Nanocrystalline Metals and Oxides: Selected Properties and Applications, Knauth, P. and Schonman, J., Eds., Boston: Kluwer, 2001, pp. 1–39.

    Google Scholar 

  9. Weissmüller J., in Proc. 22nd Riso Int. Symp. on Materials Science: Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modelling, Dinesen, A.R., Eldrup, M., Jensen, D.J., Linderoth, S., Pederson, T.B., Pryds, N.H., Pedersen, A., and Wert, J A., Eds., Roskilde (Denmark): Riso National Laboratory, 2001, pp. 155–175.

    Google Scholar 

  10. Buler, P., Nanotermodinamika, St. Petersburg: Yanus, 2004.

    Google Scholar 

  11. Poole, C.P., Jr. and Owens, F.J., Introduction to Nanotechnology, New York: Wiley, 2003.

    Google Scholar 

  12. Stroyuk, A.L., Kryukov, A.I., Kuchmii, S.Ya., and Pokhodenko, V.D., Teor. Eksp. Khim., 2005, vol. 41, no. 2, pp. 67–85.

    CAS  Google Scholar 

  13. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructured Materials), Moscow: Izd. Tsentr “Akademiya,” 2005.

    Google Scholar 

  14. Gusev, A.I., Nanomaterialy, nanostruktury, nanotechnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: FIZMATLIT, 2005.

    Google Scholar 

  15. Andrievskii, R.A., Nanostrukt. Materialoved., 2005, no. 1, pp. 5–13.

  16. Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, pp. 111–239.

    Article  CAS  Google Scholar 

  17. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  18. Rusanov, A.I., Kolloid. Zh., 2006, vol. 68, pp. 368–374.

    Google Scholar 

  19. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Knizhnyi Dom “Universitet,” 2006.

    Google Scholar 

  20. Roduner, E., Nanoscopic Materials: Size-Dependent Phenomena, Cambridge: RSC Publishing, 2006.

    Google Scholar 

  21. Nanomaterials and Nanochemistry, Bréchignac, C., Houdy, P., and Lahmani, M., Eds., Berlin: Springer, 2007.

    Google Scholar 

  22. Andrievskii, R.A., Ross. Khim. Zh. (Zh. Ross. Khim. O-va im. D. I. Mendeleeva), 2002, vol. 46, no. 5, pp. 50–56.

    CAS  Google Scholar 

  23. Bazulev, A.N., Samsonov, V.M., and Sdobnyakov, N.Yu., Zh. Fiz. Khim., 2002, vol. 76, no. 11, pp. 2073–2076.

    Google Scholar 

  24. Samsonov, V.M., Izv. Ross. Akad. Nauk, Ser. Fiz., 2005, vol. 69, pp. 1036–1038.

    CAS  Google Scholar 

  25. Magomedov, M.N., Fiz. Tverd. Tela, 2004, vol. 46, no. 5, pp. 924–936.

    Google Scholar 

  26. Magomedov, M.N., Zh. Fiz. Khim., 2005, vol. 79, no. 5, pp. 829–835.

    Google Scholar 

  27. Ouyang, G., Tan, X., and Yang, G., Phys. Rev. B, 2006, vol. 74, p. 195408.

    Article  CAS  Google Scholar 

  28. Lu, H.M. and Jiang, Q., Langmuir, 2005, vol. 21, pp. 779–786.

    Article  CAS  Google Scholar 

  29. Nanda, K.K., Appl. Phys. Lett., 2005, vol. 87, p. 021909.

    Article  Google Scholar 

  30. Vanithakumari, S.V. and Nanda, K.K., J. Phys. Chem. B, 2006, vol. 110, pp. 1033–1039.

    Article  CAS  Google Scholar 

  31. Nanda, K.K., Kruis, F.E., and Fissan, H., Phys. Rev. Lett., 2002, vol. 89, p. 256103.

    Article  CAS  Google Scholar 

  32. Nanda, K.K., Maisels, A., Kruis, F.E., Fissan, H., and Stappert, S., Phys. Rev. Lett., 2003, vol. 91, p. 106102.

    Article  CAS  Google Scholar 

  33. Schroeder, A., Fleig, J., Drings, H., et al., Solid State Ionics, 2004, vol. 173, pp. 95–99.

    Article  CAS  Google Scholar 

  34. Caro, A. and Van Swygenhoven, H., Phys. Rev. B, 2001, vol. 63, pp. 134101 (1–8).

    Article  CAS  Google Scholar 

  35. Lu, K. and Sun, N.X., Phil. Mag. Lett., 1997, vol. 75, pp. 389–393.

    Article  CAS  Google Scholar 

  36. Ouyang, G., Liang, L.H., Wang, C.X., et al., Appl. Phys. Lett., 2006, vol. 88, p. 091914.

    Article  CAS  Google Scholar 

  37. Summ, B.D., Osnovy kolloidnoi khimii (Fundamentals of Colloid Chemistry), Moscow: Izd. Tsentr “Akademiya,” 2006.

    Google Scholar 

  38. Samsonov, V.M., Dronnikov, V.V., and Mal’kov, O.A., Zh. Fiz. Khim., 2004, vol. 78, no. 7, pp. 1203–1210.

    CAS  Google Scholar 

  39. Gromov, D.G., Gavrilov, S.A., Rodichev, E.N., et al., Zh. Fiz. Khim., 2006. vol. 80, no. 10, pp. 1856–1862.

    Google Scholar 

  40. Xiao, S., Hu, W., and Yang, J., J. Chem. Phys., 2006, vol. 125, p. 184504.

    Article  CAS  Google Scholar 

  41. Guisbiers, G. and Wautelet, M., Nanotechnology, 2006, vol. 17, pp. 2008–2012.

    Article  CAS  Google Scholar 

  42. Rekhviashvili, S.Sh. and Kishtikova, E.V., Pis’ma Zh. Tekh. Fiz., 2006, vol. 32, no. 10, pp. 50–58.

    Google Scholar 

  43. Qi, W.H., Physica B, 2005, vol. 368, pp. 46–53.

    Article  CAS  Google Scholar 

  44. Zhong, J., Zhang, L.H., Jin, Z.H., et al., Acta Mater., 2001, vol. 49, pp. 2897–2904.

    Article  CAS  Google Scholar 

  45. Xu, Q., Sharp, I.D., Yuan, C.W., et al., Phys. Rev. Lett., 2006, vol. 97, p.155701.

  46. Sheng, H.W., Ren, G., Peng, L.M., et al., Phil. Mag. Lett., 1996, vol. 73, no. 4, pp. 179–186.

    Article  CAS  Google Scholar 

  47. Mei, Q.S. and Lu, K., Progr. Mater. Sci., 2007, vol. 52, pp. 1175–1196.

    Article  CAS  Google Scholar 

  48. Qi, W.H., Mod. Phys. Lett., 2006, vol. 20, pp. 1943–1946.

    Article  CAS  Google Scholar 

  49. Rekhviashvili, S.Sh., Kishtikova, E.V., Karmokova, A.M., et al., Pis’ma Zh. Tekh. Fiz., 2007, vol. 33, no. 2, pp. 1–8.

    Google Scholar 

  50. Gromov, D.G., Gavrilov, S.A., Rodichev, E.I., et al., Fiz. Tverd. Tela, 2007, vol. 49, no. 1, pp. 172–178.

    Google Scholar 

  51. Suresh, A., Mayo, M.J., and Porter, W.D., J. Mater. Res., 2003, vol. 18, pp. 2912–2921.

    Article  CAS  Google Scholar 

  52. Sato, H., Kitakami, O., Sakurai, T., et al., J. Appl. Phys., 1997, vol. 81, pp. 1858–1866.

    Article  CAS  Google Scholar 

  53. Shi, W., Kong, J., Shen, H., et al., Vacuum, 1992, vol. 42, pp. 1070–1074.

    Article  Google Scholar 

  54. Asaka, K., Hirotsu, Y.Y., and Tadaki, T., Mater. Sci. Eng. A, 1999, vols. 272–275, pp. 262–269.

    Google Scholar 

  55. Winterer, M., Nitsche, R., Redfern, S.A.T., et al., Nanostruct. Mater., 1995, vol. 5, pp. 679–686.

    Article  CAS  Google Scholar 

  56. Garvie, R.C. and Goss, M.C., J. Mater. Sci., 1986, vol. 21, pp. 1253–1263.

    Article  CAS  Google Scholar 

  57. Chraska, T., King, A.H., and Berndt, C.C., Mater. Sci. Eng. A, 2000, vol. 286, pp. 169–176.

    Article  Google Scholar 

  58. Ji, Z., Haynes, J.A., Ferber, M.K., et al., Surf. Coat. Technol., 2001, vol. 135, pp. 109–116.

    Article  CAS  Google Scholar 

  59. Akdogan, E.K., Mayo, W., Safari, A., et al., Ferroelectrics, 1999, vol. 223, pp. 11–19.

    Article  CAS  Google Scholar 

  60. McHale, J.M., Auroux, A., Perrotta, A.J., et al., Science, 1997, vol. 277, pp. 788–796.

    Article  CAS  Google Scholar 

  61. Hahn, H., Skandan, G., and Parker, J.C., Scr. Metal. Mater., 1991, vol. 25, pp. 2389–2396.

    Article  Google Scholar 

  62. Alivisatos, A.P., Ber. Bunsenges. Phys. Chem., 1997, vol. 101, pp. 1573–1578.

    CAS  Google Scholar 

  63. Suresh, A., Majo, M.J, Porter, W.D., et al., J. Am. Ceram. Soc., 2003, vol. 86, p. 360–362.

    Article  CAS  Google Scholar 

  64. Glezer, A.M., Blinova, E.N., and Pozdnyakov, V.A., Izv. Ross. Akad. Nauk., Ser. Fiz., 2002, vol. 66, pp. 1263–1275.

    CAS  Google Scholar 

  65. Bublik, A.I. and Pines, B.Ya., Dokl. Akad. Nauk SSSR, 1952, vol. 87, pp. 215–218.

    CAS  Google Scholar 

  66. Morokhov, I.D., Trusov, L.I., Kats, E.I., et al., Dokl. Akad. Nauk SSSR, 1981, vol. 261, pp. 850–854.

    CAS  Google Scholar 

  67. Thompson, G.B., Banerjee, R., Dregia, S.A., et al., in Nanostructured Interfaces, Plitzko, J.M., Duscher, G., Zhu, Y., and Ichinose, H., Eds., vol. 727, Warrendale: Mat. Res. Soc. Proc., 2002, p. R5.8.

    Google Scholar 

  68. Jesser, W.A., Shneck, R.Z., and Gile, W.W., Phys. Rev. B, 2004, vol. 69, p. 144121.

    Article  CAS  Google Scholar 

  69. Huang, F., Tong, Y., and Yun, Sh., Fiz. Tverd. Tela, 2004, vol. 46, pp. 601–605.

    Google Scholar 

  70. Vereshchagin, A.L., Fiz. Goren. Vzr., 2002, vol. 38, pp. 119–124.

    CAS  Google Scholar 

  71. Danilenko, V.V., Fiz. Goren. Vzr., 2005, vol. 41, pp. 110–116.

    CAS  Google Scholar 

  72. Andrievskii, R.A. and Kalinnikov, G.V., Fiz. Khim. Stekla, 2007, vol. 33, no. 4, pp. 483–489.

    Google Scholar 

  73. Kalinnikov, G.V., Andrievskii, R.A., Kopylov, V.N., and Louzguine, D., Fiz. Tverd. Tela, 2008, vol. 50, no. 2, pp. 359–363.

    Google Scholar 

  74. Andrievskii, R.A., Usp. Fiz. Nauk, 2007, vol. 177, no. 7, pp. 721–735.

    Article  Google Scholar 

  75. Andrievskii, R.A., Zh. Ross. Khim. O-va. im. D. I. Mendeleeva, 1991, vol. 36, no. 2, pp. 137–144.

    CAS  Google Scholar 

  76. Weissmüller, J. and Lemier, C., Phil. Mag. Lett., 2000, vol. 80, pp. 411–414.

    Article  Google Scholar 

  77. Koshkin, V.M. and Slezov, V.V., Pis’ma Zh. Tekh. Fiz.., 2004, vol. 30, no. 9, pp. 38–43.

    Google Scholar 

  78. Shirinyan, A.S., Gusak, A.M., and Wautelet, M., Acta Mater., 2005, vol. 53, pp. 5025–5032

    Article  CAS  Google Scholar 

  79. Weissmüller, J., Bunzel, P., and Wilde, G., Scr. Mater., 2001, vol. 51, pp. 813–816.

    Article  CAS  Google Scholar 

  80. Razumov, I.K., Cand. Sci. (Phys.-Math.) Dissertation, Yekaterinburg: Inst. Fiz. Metal. Ural. Otd. Ross. Akad. Nauk, 2005.

    Google Scholar 

  81. Mayrhofer, P.H., Fischer, F.D., Bohm, H.J., et al., Acta Mater., 2007, vol. 55, pp. 1441–1446.

    Article  CAS  Google Scholar 

  82. Zemlyanov, M.G., Panova, G.Kh., Syrykh, G.V., and Shikov, A.A., Fiz. Tverd. Tela, 2005, vol. 47, no. 2, pp. 350–353.

    Google Scholar 

  83. Zemlyanov, M.G., Panova, G.Kh., Syrykh, G.V., and Shikov, A.A., Fiz. Tverd. Tela, 2006, vol. 48, no. 1, pp. 128–132.

    Google Scholar 

  84. Magomedov, M.N., Fiz. Tverd. Tela, 2003, vol. 45, no. 9, pp. 1159–1163.

    Google Scholar 

  85. Lang, X.Y. and Jiang, Q., Sol. State Comm., 2005, vol. 134, pp. 797–802.

    Article  CAS  Google Scholar 

  86. Bose, S., Raychaudhuri, P., Banerjee, R., et al., Phys. Rev. Lett., 2005, vol. 95, p. 147003.

    Article  CAS  Google Scholar 

  87. Bose, S., Raychaudhuri, P., Banerjee, R., et al., Phys. Rev. B, 2006, vol. 74, p. 224502.

    Article  CAS  Google Scholar 

  88. Troitskiy, V.N., Domashnev, I.A., Kurkin, E.N., et al., J. Nanopart. Res., 2003, vol. 5, pp. 521–526.

    Article  CAS  Google Scholar 

  89. Shen, Y.F., Lu, L., Lu, Q.H., et al., Scr. Mater., 2005, vol. 52, pp. 989–964.

    Article  CAS  Google Scholar 

  90. Demetry, C. and Shi, X., Solid State Ionics, 1999, vol. 118, pp. 271–279.

    Article  CAS  Google Scholar 

  91. Guo, X. and Zhang, X., Acta Mater., 2003, vol. 51, pp. 2539–2547.

    Article  CAS  Google Scholar 

  92. Kosacki, I. and Rouleau, Ch.M., Becher, P.B., et al., Solid State Ionics, 2005, vol. 176, pp. 1319–1326.

    Article  CAS  Google Scholar 

  93. Chiang, Y.-M., Lavik, E.B., and Bloom, D.A., Nanostruct. Mater., 1997, vol. 9, pp. 633–638.

    Article  CAS  Google Scholar 

  94. Klinchuk, M.D., Bykov, P.I., and Hilcher, B., Fiz. Tverd. Tela, 2006, vol. 48, no. 11, pp. 2079–2084.

    Google Scholar 

  95. Chiu, P. and Shih, I., Nanotechnology, 2004, vol. 15, pp. 1489–1492.

    Article  CAS  Google Scholar 

  96. Fedorov, D.V., Zahn, P., and Mertig, L., Thin Solid Films, 2005, vol. 473, pp. 346–350.

    Article  CAS  Google Scholar 

  97. Urban, D.F., Burki, J., Stafford, C.A., et al., Phys. Rev. B, 2006, vol. 74, p. 245414.

    Article  CAS  Google Scholar 

  98. Yang, H.-S., Bai, G.-R., Thompson, L.I., et al., Acta Mater., 2002, vol. 50, pp. 2309–2314.

    Article  CAS  Google Scholar 

  99. Chen, G., Narayanaswamy, A., and Dames, C., Superlatt. Microstr., 2004, vol. 35, pp. 161–167.

    Article  CAS  Google Scholar 

  100. Andrievskii, R.A., Dashevskii, Z.M., and Kalinnikov, G.V., Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, no. 22, pp. 1–7.

    Google Scholar 

  101. Eletskii, A.V., Usp. Fiz. Nauk, 2007, vol. 177, no. 3, pp. 233–274.

    Article  Google Scholar 

  102. Andrievskii, R.A. and Glezer, A.M., Usp. Fiz. Nauk, 2009, vol. 179, no. 4, pp. 337–358.

    Article  Google Scholar 

  103. Parmon, V.N., Dokl. Ross. Akad. Nauk, 2007, vol. 413, no. 1, pp. 53–59.

    Google Scholar 

  104. Ivanchev, S.S. and Ozerin, A.N., Vysokomol. Soedin., Ser. B, 2006, vol. 48, no. 8, pp. 1531–1544.

    CAS  Google Scholar 

  105. Gleiter, H., Acta Mater., 2000, vol. 48, no. 1, pp. 1–29.

    Article  CAS  Google Scholar 

  106. Pokropivny, V.V. and Skorokhod, V.V., Mater. Sci. Eng. C, 2007, vol. 27, pp. 990–994.

    Article  CAS  Google Scholar 

  107. Serov, I.N., Margolin, V.I., Soltovskaya, I.A., et al., in Nano- i mikrosistemnaya tekhnika: Ot issledovanii k razrabotkam (Nano- and Microsystems Techniques: From Research to Development), Mal’tsev, P.P., Ed., Moscow: Tekhnosfera, 2005, pp. 230–241.

    Google Scholar 

  108. Ma, E., JOM, 2006, vol. 58, no. 4, pp. 49–53.

    Article  CAS  Google Scholar 

  109. Ievlev, V.M. and Shvedov, E.V., Fiz. Tverd. Tela, 2006, vol. 48, no. 1, pp. 133–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Andrievskii.

Additional information

Original Russian Text © R.A. Andrievskii, A.V. Khachoyan, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 53, No. 2, pp. 4–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievskii, R.A., Khachoyan, A.V. Role of size-dependent effects and interfaces in physicochemical properties of consolidated nanomaterials. Russ J Gen Chem 80, 555–566 (2010). https://doi.org/10.1134/S1070363210030370

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210030370

Keywords

Navigation