Skip to main content
Log in

Redox-Active Tin(IV) Complexes Based on Sterically Hindered Catecholate Ligands

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The oxidative addition of sterically hindered 3,6-dicyclohexyl-o-benzoquinone (L1), 3,5-di-tert-octyl-o-benzoquinone (L2), 4-tert-octyl-o-benzoquinone (L3), and 3,5-bis(2-phenylpropyl)-o-benzoquinone (L4) to tin(II) chloride in THF affords the corresponding tin(IV) catecholate complexes with the general formula RCatSnCl2·2THF, where Cat is the catecholate fragment; and R is 3,6-с-Hex (I), 3,5-tert-Oct (II), 4-tert-Oct (III), and 3,5-C(Me)2Ph (IV), regardless of the molar ratio of the starting reactants. The molecular structures of substituted o-benzoquinone L4 and complexes I and III in the crystalline form are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2259370 (L4), 2259371 (I), and 2259372 (III)). The oxidation–reduction properties of synthesized compounds IIV are studied by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Pierpont, C., Coord. Chem. Rev., 2001, vols. 219–221, p. 415.

    Article  Google Scholar 

  2. Kaim, W., Inorg. Chem., 2011, vol. 50, p. 9752.

    Article  CAS  PubMed  Google Scholar 

  3. Mao, G., Song, Y., Hao, T., et al., Chin. Sci. Bull., 2014, vol. 59, p. 2936.

    Article  CAS  Google Scholar 

  4. Starikova, A.A. and Minkin, V.I., Russ. Chem. Rev., 2018, vol. 87, p. 1049.

    Article  CAS  Google Scholar 

  5. Fomenko, I.S. and Gushchin, A.L., Russ. Chem. Rev., 2020, vol. 89, p. 966.

    Article  CAS  Google Scholar 

  6. Broere, D.L., Plessius, R., and Van der Vlugt, J.I., Chem. Soc. Rev., 2015, vol. 44, p. 6886.

    Article  CAS  PubMed  Google Scholar 

  7. Luca, O.R. and Crabtree, R.H., Chem. Soc. Rev., 2013, vol. 42, p. 1440.

    Article  CAS  PubMed  Google Scholar 

  8. Baryshnikova, S.V. and Poddel’sky, A.I., Molecules, 2022, vol. 27, p. 3928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ershova, I.V., Piskunov, A.V., and Cherkasov, V.K., Russ. Chem. Rev., 2020, vol. 89, p. 1157.

    Article  CAS  Google Scholar 

  10. Pashanova, K.I., Poddel’sky, A.I., and Piskunov, A.V., Coord. Chem. Rev., 2022, vol. 459, p. 214399.

    Article  CAS  Google Scholar 

  11. Zanello, P. and Corsini, M., Coord. Chem. Rev., 2006, vol. 250, p. 2000.

    Article  CAS  Google Scholar 

  12. Poddel’skii, A.I., Abakumov, G.A., Bubnov, M.P., Cherkasov, V.K., and Abakumova, L.G., Izv. Akad. Nauk., Ser. Khim., 2004, no. 6, p. 1142.

  13. Abakumov, G.A. and Nevodchikov, V.I., Dokl. Akad Nauk SSSR, 1982, vol. 266, no. 6, p. 1407.

    CAS  Google Scholar 

  14. Lange, C.W., Foldeaki, M., Nevodchikov, V.I., et al., J. Am. Chem. Soc., 1992, vol. 114, p. 4220.

    Article  CAS  Google Scholar 

  15. Jung, O.-S. and Pierpont, C.G., J. Am. Chem. Soc., 1994, vol. 116, p. 2229.

    Article  CAS  Google Scholar 

  16. Nevodchikov, V.I., Abakumov, G.A., Cherkasov, V.K., and Razuvaev, G.A., J. Organomet. Chem., 1981, vol. 214, p. 119.

    Article  CAS  Google Scholar 

  17. Pierpont, C.G. and Buchanan, R.M., Coord. Chem. Rev., 1981, vol. 38, p. 45.

    Article  CAS  Google Scholar 

  18. Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Coord. Chem. Rev., 2009, vol. 253, p. 291.

    Article  Google Scholar 

  19. Abakumov, G.A., Poddel’sky, A.I., Grunova, E.V., et al., Angew. Chem., 2005, vol. 117, p. 2827.

    Article  Google Scholar 

  20. Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., et al., Chem.-Eur. J., 2006, vol. 12, p. 3916.

    Article  CAS  PubMed  Google Scholar 

  21. Piskunov, A.V., Ershova, I.V., Fukin, G.K., and Shavyrin, A.S., Inorg. Chem. Commun., 2013, vol. 38, no. 12, p. 127.

    Article  CAS  Google Scholar 

  22. Piskunov, A.V., Piskunova, M.S., and Chegerev, M.G., Russ. Chem. Bull., 2014, no. 4, p. 912.

  23. Fedushkin, I.L., Dodonov, V.A., Skatova, A.A., et al., Chem.-Eur. J., 2018, vol. 24, no. 8, p. 1877.

    Article  CAS  PubMed  Google Scholar 

  24. Fedushkin, I.L., Nikipelov, A.S., Morozov, A.G., et al., Chem.-Eur. J., 2012, vol. 18, p. 255.

    Article  CAS  PubMed  Google Scholar 

  25. Ilyakina, E.V., Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Mendeleev Commun., 2012, vol. 22, p. 208.

    Article  CAS  Google Scholar 

  26. Ilyakina, E.V., Poddel’sky, A.I., and Piskunov, A.V., et al., Inorg. Chim. Acta, 2013, vol. 394, p. 282.

    Article  CAS  Google Scholar 

  27. Gordon, A. and Ford, R., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  28. Reichhardt, C., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988.

    Google Scholar 

  29. Kocherova, T.N., Druzhkov, N.O., Mart’yanov, K.A., et al., Russ. Chem. Bull., 2020, vol. 69, no. 12, p. 2383.

    Article  CAS  Google Scholar 

  30. Kocherova, T.N., Druzhkov, N.O., Arsen’ev, M.V., et al., Russ. Chem. Bull., 2023, vol. 72, no. 5, p. 1192.

    Article  CAS  Google Scholar 

  31. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.38.46—Software Package, Rigaku OD, 2015.

  32. APEX4. Bruker Molecular Analysis Research Tool. Version 2021.4-0, Madison: Bruker AXS Inc., 2021.

  33. SAINT Data Reduction and Correction Program. Version 8.40B, Madison: Bruker AXS, 2019.

  34. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheldrick, G., Acta Crystallogr., Sect. A: Found Adv., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  36. Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  37. Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  38. SCALE3 ABSPACK: Empirical absorption correction. CrysAlisPro 1.171.38.46—Software Package, Rigaku OD, 2015.

  39. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS, 2016.

  40. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  41. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  42. Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C.M., Civalleri, B., Maschio, L., Rerat, M., Casassa, S., Baima, J., Salustro, S., and Kirtman, B., WIREs Comput. Mol. Sci., 2018, vol. 8, p. e1360.

    Article  Google Scholar 

  43. Godbout, N., Salahub, D.R., Andzelm, J., and Wimmer, E., Can. J. Chem., 1992, vol. 70, p. 560.

    Article  CAS  Google Scholar 

  44. Pritchard, B.P., Altarawy, D., Didier, B., et al., J. Chem. Inf. Model, 2019, vol. 59, p. 4814.

    Article  CAS  PubMed  Google Scholar 

  45. Feller, D., J. Comput. Chem., 1996, vol. 17, p. 1571.

    Article  CAS  Google Scholar 

  46. Schuchardt, K.L., Didier, B.T., Elsethagen, T., et al., J. Chem. Inf. Model, 2007, vol. 47, no. 3, p. 1045.

    Article  CAS  PubMed  Google Scholar 

  47. Spek, A.L., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 9.

    Article  CAS  Google Scholar 

  48. Jelsch, C., Guillot, B., Lagoutte, A., and Lecomte, C., J. Appl. Crystallogr., 2005, vol. 38, p. 38.

    Article  Google Scholar 

  49. Hansen, N.K. and Coppens, P., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1978, vol. 34, p. 909.

    Article  Google Scholar 

  50. Stash, A.I. and Tsirelson, V.G., J. Appl. Crystallogr., 2014, vol. 47, p. 2086.

    Article  CAS  Google Scholar 

  51. Batsanov, S., Russ. J. Inorg. Chem., 1991, vol. 36, p. 1694.

    Google Scholar 

  52. Baryshnikova, S.V., Poddel’sky, A.I., Bellan, E.V., et al., Inorg. Chem., 2020, vol. 59, p. 6774.

    Article  CAS  PubMed  Google Scholar 

  53. Lado, A.V., Poddel’sky, A.I., Piskunov, A.V., et al., Inorg. Chim. Acta, 2005, vol. 358, p. 4443.

    Article  CAS  Google Scholar 

  54. Piskunov, A.V., Lado, A.V., Ilyakina, E.V., et al., J. Organomet. Chem., 2008, vol. 693, p. 128.

    Article  CAS  Google Scholar 

  55. Turek, J., Kampová, H., Padelkova, Z., and Ruzicka, A., J. Organomet. Chem., 2013, vols. 745–746, p. 25.

    Article  Google Scholar 

  56. Annan, T.A., McGarvey, B.R., Ozarowski, A., et al., Dalton Trans., 1989, vol. 3, p. 439.

    Article  Google Scholar 

  57. Zubieta, J.A. and Zuckerman, J.J., Prog. Inorg. Chem., New York: Wiley, 1978, vol. 24, p. 251.

    Google Scholar 

  58. Archer, S.J., Koch, K.R., and Schmidt, S., Inorg. Chim. Acta, 1987, vol. 126, p. 209.

    Article  CAS  Google Scholar 

  59. Baryshnikova, S.V., Bellan, E.V., Poddel’sky, A.I., et al., Eur. J. Inorg. Chem, 2016, no. 33, p. 5230.

  60. Ilyakina, E.V., Poddel’sky, A.I., Fukin, G.K., et al., Inorg. Chem., 2013, vol. 52, p. 5284.

    Article  CAS  PubMed  Google Scholar 

  61. Brown, S.N., Inorg. Chem., 2012, vol. 51, p. 1251.

    Article  CAS  PubMed  Google Scholar 

  62. Fukin, G.K. and Cherkasov, A.V., Mendeleev Commun., 2021, vol. 31, p. 182.

    Article  CAS  Google Scholar 

  63. Pochekutova, T.S., Fukin, G.K., Baranov, E.V., et al., Inorg. Chim. Acta, 2022, vol. 531, p. 120734.

    Article  CAS  Google Scholar 

  64. Bader, R.F.W., Atoms in Molecules: A Quantum Theory. Oxford: Oxford Univ., 1990.

    Book  Google Scholar 

  65. Fukin, G.K., Baranov, E.V., Jelsch, C., et al., J. Phys. Chem. A, 2011, vol. 115, p. 8271.

    Article  CAS  PubMed  Google Scholar 

  66. Fukin, G.K., Samsonov, M.A., Baranov, E.V., et al., Russ. Chem. Bull., 2016, no. 1, p. 54.

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use “Analytical Center of Institute of Organometallic Chemistry of Russian Academy of Sciences” and supported by the project “Provision of Development of Material Technical Infrastructure of Centers for Collective Use of Scientific Equipment” (unique identifier RF–2296.61321X0017, agreement no. 075-15-2021-670).

Funding

This work was supported by the Council on Grants of the President of the Russian Federation for state support of young Russian scientists and leading scientific schools of the Russian Federation (project no. NSh-403.2022.1.3). The study of the experimental–theoretical electron density was supported by the Russian Science Foundation, project no. 21-13-00336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Baryshnikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baryshnikova, S.V., Arsen’ev, M.V., Druzhkov, N.O. et al. Redox-Active Tin(IV) Complexes Based on Sterically Hindered Catecholate Ligands. Russ J Coord Chem 50, 49–60 (2024). https://doi.org/10.1134/S1070328423600778

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600778

Keywords:

Navigation