Skip to main content
Log in

Synthesis, Supramolecular Self-Organization, and Thermal Behavior of the Double Three-Dimensional Pseudo-Polymer Complex [Au{S2CN(CH2)6}2]4[Ag5Cl9] Comprising the New Type Silver(I) Anion

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

New crystalline pseudo-polymer complex [Au{S2CN(CH2)6}2]4[Ag5Cl9] (I) was obtained by binding gold(III) with silver(I) hexamethylenedithiocarbamate from an AuCl3/2.5 M NaCl solution. Complex I was isolated in a preparative yield and structurally characterized. The X-ray diffraction (XRD) data (CIF file CCDC no. 2205197) show that the isomeric cations of [Au{S2CN(CH2)6}2]+ (A : 2B : C) and complicated pentanuclear anion [Ag5Cl9]4– are the main structural units of the compound. The supramolecular self-organization of the ionic structural units in complex I occurs due to multiple secondary interactions Cl···S and Ag···S, hydrogen bonds C–H···Cl, and anagostic interactions C–H···Ag, resulting in the formation of the 3D pseudo-polymer framework. The thermal behavior of complex I is studied by simultaneous thermal analysis to find that the thermolysis of the double Au(III)–Ag(I) compound is accompanied by the quantitative regeneration of the bound metals under comparatively mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. The solvated form of the hexanuclear silver(I) cluster [Ag6(HmDtc)6]·2CH2Cl2 was earlier prepared by the recrystallization of the complex from a dichloromethane solution and structurally characterized [20].

  2. The methodical approaches [36], which made it possible to determine the 81% contribution of the tetrahedral component to the geometry of the [AgCl4] polyhedra were used for the quantitative characterization of the Ag(1) and Ag(1)c polyhedra.

  3. The concept of secondary bonds was proposed for the description of nonvalent type interactions between atoms at the distances comparable with the sum of their van der Waals radii [37].

REFERENCES

  1. Janz, D.M., Dithiocarbamates, in Encyclopedia of Toxicology, P. Wexler, Ed., Elsevier, 2014, vol. 2, 3rd ed., p. 212.

  2. Kaul, L., Süss, R., Zannettino, A., and Richter, K., iScience, 2021, vol. 24, no. 2, p. 102092.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sauna, Z.E., Shukla, S., and Ambudkar, S.V., Mol. BioSyst., 2005, vol. 1, no. 2, p. 127.

    Article  CAS  PubMed  Google Scholar 

  4. Skrott, Z., Mistrik, M., Andersen, K.K., et al., Nature, 2017, vol. 552, p. 194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, H., Wang, J., Wu, C., et al., Drug Discov. Today, 2020, vol. 25, no. 6, p. 1099.

    Article  CAS  PubMed  Google Scholar 

  6. McMahon, A., Chen, W., and Li, F., J. Control. Release, 2020, vol. 319, p. 352.

    Article  CAS  PubMed  Google Scholar 

  7. Hogarth, G., Mini-Rev. Med. Chem., 2012, vol. 12, no. 12, p. 1202.

    Article  CAS  PubMed  Google Scholar 

  8. Williams, M.R.M., Bertrand, B., Hughes, D.L., et al., Metallomics, 2018, vol. 10, no. 12, p. 1655.

    Article  CAS  PubMed  Google Scholar 

  9. Le, H.V., Babak, M.V., Ehsan, M.A., et al., Dalton Trans., 2020, vol. 49, no. 22, p. 7355.

    Article  CAS  PubMed  Google Scholar 

  10. Adokoh, C.K., RSC Adv., 2020, vol. 10, no. 5, p. 2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oladipo, D., Mocktar, C., and Omondi, B., Arabian J. Chem., 2020, vol. 13, no. 8, p. 6379.

    Article  CAS  Google Scholar 

  12. Abás, E., Aguirre-Ramírez, D., Laguna, M., and Grasa, L., Biomedicines, 2021, vol. 9, no. 12, p. 1775.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oladipo, D., Tolufashe, G.F., Mocktar, C., and Omondi, B., Inorg. Chim. Acta, 2021, vol. 520, 120316.

    Article  CAS  Google Scholar 

  14. Loseva, O.V., Lutsenko, I.A., Rodina, T.A., et al., Polyhedron, 2022, vol. 226, p. 116097.

    Article  CAS  Google Scholar 

  15. Korneeva, E.V., Smolentsev, A.I., Antzutkin, O.N., and Ivanov, A.V., Inorg. Chim. Acta, 2021, vol. 525, 120383.

  16. Korneeva, E.V., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 8, p. 1680. https://doi.org/10.1134/S1070363218080200

    Article  Google Scholar 

  17. Korneeva, E.V., Smolentsev, A.I., Antzutkin, O.N., and Ivanov, A.V., Russ. Chem. Bull., Int. Ed., 2019, vol. 68, no. 1, p. 40. https://doi.org/10.1007/s11172-019-2413-7

  18. Korneeva, E.V., Novikova, E.V., Loseva, O.V., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 11, p. 769. https://doi.org/10.1134/S1070328421090050

    Article  CAS  Google Scholar 

  19. Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.

    Google Scholar 

  20. Korneeva, E.V., Ivanov, A.V., Gerasimenko, A.V., et al., Russ. J. Gen. Chem., 2019, vol. 89, no. 8, p. 1642. https://doi.org/10.1134/S1070363219080152

    Article  CAS  Google Scholar 

  21. Loseva, O.V., Rodina, T.A., Ivanov, A.V., et al., Russ. J. Coord. Chem., 2018, vol. 44, no. 10, p. 604. https://doi.org/10.1134/S107032841810007X

    Article  CAS  Google Scholar 

  22. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), Madison: Bruker AXS Inc., 2004.

  23. Sheldrick, G.M., Acta Crystallogr., Sect. C.: Struct. Chem., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  24. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii (Applications of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Univ., 1979.

  25. Gremlikh, G.U., Yazyk spektrov. Vvedenie v interpretatsiyu spektrov organicheskikh soedinenii (Language of Spectra. Introduction to Interpretation of the Spectra of Organic Compounds), Moscow: LLC Bruker Optik, 2002.

  26. Bocian, D.F., Pickett, H.M., Rounds, T.C., and Strauss, H.L., J. Am. Chem. Soc., 1975, vol. 97, no. 4, p. 687.

    Article  CAS  Google Scholar 

  27. Boessenkool, I.K. and Boeyens, J.C.A., J. Cryst. Mol. Struct., 1980, vol. 10, nos. 1–2, p. 11.

    Article  CAS  Google Scholar 

  28. Entrena, A., Campos, J., Gómez, J.A., et al., J. Org. Chem., 1997, vol. 62, no. 2, p. 337.

    Article  CAS  PubMed  Google Scholar 

  29. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.

    Article  CAS  Google Scholar 

  30. Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.

    Article  CAS  Google Scholar 

  31. Schmidbaur, H. and Schier, A., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 3, p. 746.

    Article  CAS  PubMed  Google Scholar 

  32. Helgesson, G. and Jagner, S., Dalton Trans., 1988, no. 8, p. 2117.

  33. Helgesson, G. and Jagner, S., Dalton Trans., 1990, no. 8, p. 2413.

  34. Hassan, A., Breeze, S.R., Courtenay, S., et al., Organometallics, 1996, vol. 15, no. 26, p. 5613.

    Article  CAS  Google Scholar 

  35. Aboulkacem, S., Tyrra, W., and Pantenburg, I., J. Chem. Cryst., 2006, vol. 36, no. 2, p. 141.

    Article  CAS  Google Scholar 

  36. Yang, L., Powel, D.R., and Houser, R.P., Dalton Trans., 2007, no. 9, p. 955.

  37. Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.

    Article  CAS  Google Scholar 

  38. Wang, W., Ji, B., and Zhang, Y., J. Phys. Chem. A, 2009, vol. 113, no. 28, p. 8132.

    Article  PubMed  Google Scholar 

  39. Scilabra, P., Terraneo, G., and Resnati, G., Acc. Chem. Res., 2019, vol. 52, no. 5, p. 1313.

    Article  CAS  PubMed  Google Scholar 

  40. Reddy, C.M., Kirchner, M.T., Gundakaram, R.C., et al., Chem. Eur. J., 2006, vol. 12, no. 8, p. 2222.

    Article  CAS  PubMed  Google Scholar 

  41. Awwadi, F.F., Willett, R.D., Peterson, K.A., and Twamley, B., Chem. Eur. J., 2006, vol. 12, no. 35, p. 8952.

    Article  CAS  PubMed  Google Scholar 

  42. Usoltsev, A.N., Korobeynikov, N.A., Novikov, A.S., et al., Inorg. Chim. Acta, 2020, vol. 513, p. 119932.

    Article  CAS  Google Scholar 

  43. Rajput, G., Singh, V., Gupta, A.N., et al., CrystEngComm, 2013, vol. 15, no. 23, p. 4676.

    Article  CAS  Google Scholar 

  44. Korneeva, E.V., Lutsenko, I.A., Bekker, O.B., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 12, p. 924. https://doi.org/10.1134/S1070328422700063

    Article  CAS  Google Scholar 

  45. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik (Phase Diagrams of Binary Metallic Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental analysis and IR spectroscopy were carried out using the equipment of the Center for Collective Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences). Electron microscopy, X-ray spectral studies, and determination of the gold content in solutions were carried out at the Center for Collective Use “Amur Center of Mineralogical and Geochemical Studies” of the Institute of Geology and Nature Management (Far Eastern Branch, Russian Academy of Sciences).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneeva, E.V., Loseva, O.V., Smolentsev, A.I. et al. Synthesis, Supramolecular Self-Organization, and Thermal Behavior of the Double Three-Dimensional Pseudo-Polymer Complex [Au{S2CN(CH2)6}2]4[Ag5Cl9] Comprising the New Type Silver(I) Anion. Russ J Coord Chem 50, 21–32 (2024). https://doi.org/10.1134/S1070328423600572

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600572

Keywords:

Navigation