Skip to main content
Log in

Synthesis, Structure, and Properties of Copper(II), Nickel(II), and Cobalt(II) Ketoiminate Chelates. Molecular and Crystal Structures of Bis[2-nitro-3-(8-quinolylimino)prop-1-enoxy]cobalt(II)

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

β-Aminovinyl ketone (2-nitro-3-(8-quinolylamino)prop-2-enal) was synthesized by condensation of nitromalondialdehyde with 8-aminoquinoline. The reactions of β-aminovinyl ketone with copper, nickel, and cobalt acetates in methanol gave metal complexes. The spectral and magnetic characteristics of preparatively isolated compounds were studied. The structure of cobalt(II) chelate was determined on the basis of X-ray diffraction study (CIF file CCDC no. 2109263).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bourget-Merle, L., Lappert, M.F., and Severn, J.R., Chem. Rev., 2002, vol. 102, no. 9, p. 3031. https://doi.org/10.1021/cr010424r

    Article  CAS  PubMed  Google Scholar 

  2. Camp, C. and Arnold, J., Dalton Trans., 2016, vol. 45, no. 37, p. 14462. https://doi.org/10.1039/C6DT02013E

    Article  CAS  PubMed  Google Scholar 

  3. Puring, K., Zywitzki, D., Taffa, D.H., et al., Inorg. Chem., 2018, vol. 57, no. 9, p. 5133. https://doi.org/10.1021/acs.inorgchem.8b00204

    Article  CAS  Google Scholar 

  4. Lyubov, D.M., Tolpygin, A.O., and Trifonov, A.A., Coord. Chem. Rev., 2019, vol. 392, p. 83. https://doi.org/10.1016/j.ccr.2019.04.013

    Article  CAS  Google Scholar 

  5. Witkowska, E., Orwat, B., Oh, M.J., et al., Inorg. Chem., 2019, vol. 58, no. 22, p. 1567. https://doi.org/10.1021/acs.inorgchem.9b02785

    Article  CAS  Google Scholar 

  6. Huster, N., Zanders, D., Karle, S., et al., Dalton Trans., 2020, vol. 49, no. 31, p. 10755.https://doi.org/10.1039/d0dt01463J

    Article  CAS  PubMed  Google Scholar 

  7. Zywitzki, D., Taffa, D.H., Lamkowski, L., et al., Inorg. Chem., 2020, vol. 59, no. 14, p. 10059. https://doi.org/10.1021/acs.inorgchem.0c01204

    Article  CAS  PubMed  Google Scholar 

  8. Allison, M., Wilson, D., Pask, C.M., et al., Chembiochem, 2020, vol. 21, no. 14, p. 1988. https://doi.org/10.1002/cbic.202000028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lord, R.M., Hebden, A.J., Pask, C.M., et al., J. Med. Chem., 2015, vol. 58, no. 12, p. 4940. https://doi.org/10.1021/acs.jmedchem.5b00455

    Article  CAS  PubMed  Google Scholar 

  10. Bermeshev, M.V. and Chapala, P.P., Prog. Polymer Sci., 2018, vol. 84, p. 1. https://doi.org/10.1016/j.progpolymsci.2018.06.003

    Article  CAS  Google Scholar 

  11. Yao, S. and Driess, M., Acc. Chem. Res., 2012, vol. 45, no. 2, p. 276. https://doi.org/10.1021/ar200156r

    Article  CAS  PubMed  Google Scholar 

  12. Di Francesco, G.N., Gaillard, A., Ghiviriga, I., et al., Inorg. Chem., 2014, vol. 53, no. 9, p. 4647. https://doi.org/10.1021/ic500333p

  13. Lai, P.-N., Brysacz, C.H., Alam, M.K., et al., J. Am. Chem. Soc., 2018, vol. 140, no. 32, p. 10198. https://doi.org/10.1021/jacs.8b04841

  14. Korshunov, O.Y., Uraev, A.I., Shcherbakov, I.N., et al., Russ. J. Inorg. Chem., 2000, vol. 45, no. 9, p. 1363.

  15. Uraev, A.I., Kurbatov, V.P., Nivorozhkin, A.L., et al., Russ. Chem. Bull. Int. Ed., 2002, vol. 51, no. 10, p. 1924. https://doi.org/10.1023/A:1021321022710

    Article  CAS  Google Scholar 

  16. Uraev, A.I., Kurbatov, V.P., Tylchenko, L.S., et al., Dokl. Chem., 2002, vol. 383, no. 1, p. 57.

    Article  CAS  Google Scholar 

  17. Uraev, A.I., Ikorskii, V.N., Bubnov, M.P., et al., Russ. J. Coord.Chem., 2006, vol. 32, no. 4, p. 287. https://doi.org/10.1134/S1070328406040105

    Article  CAS  Google Scholar 

  18. Fanta, P.E., Organ. Synth., 1952, vol. 32, p. 95. https://doi.org/10.15227/orgsyn.032.0095

    Article  CAS  Google Scholar 

  19. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision A.02, 2009.

  21. Zhurko, G.A. and Zhurko, D.A., Chemcraft ver. 1.6 (build 338). http://www.chemcraftprog.com.

  22. Sheldrick, G., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  23. Uraev, A.I., Nivorozhkin, A.L., Kurbatov, V.P., et al., Russ. J. Coord. Chem., 2000, vol. 26, no. 12, p. 891. https://doi.org/10.1023/A:1026639327693

    Article  CAS  Google Scholar 

  24. Yokota, S., Tachi, Y., Nishiwaki, N., et al., Inorg. Chem., 2001, vol. 40, no. 21, p. 5316. https://doi.org/10.1021/ic0155535

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, D.J.E., Reynolds, A.M., Holland, P.L., et al., Inorg. Chem., 2002, vol. 41, no. 24, p. 6307. https://doi.org/10.1021/ic020369k

  26. Zatka, V., Holzbecher, J., and Ryan, D.E., Anal. Chim. Acta, 1971, vol. 55, no. 1, p. 2738. https://doi.org/10.1016/S0003-2670(01)82767-7

    Article  Google Scholar 

  27. Fritsch, J.M., Thoreson, K.A., and McNeill, K., Dalton Trans., 2006, no. 40, p. 4814.https://doi.org/10.1039/B609616F

  28. Dorovskikh, S.I., Alexeyev, A.V., Kuratieva, N.V., et al., J. Organomet. Chem., 2013, vol. 741, p. 122. https://doi.org/10.1016/j.jorganchem.2013.05.001

    Article  CAS  Google Scholar 

  29. Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.I., Coord. Chem. Rev., 1993, vol. 126, nos. 1−2, p. 1. https://doi.org/10.1016/0010-8545(93)85032-y

    Article  CAS  Google Scholar 

  30. Kotova, O., Lyssenko, K., Rogachev, A., et al., J. Photochem. Photobiol., A, 2011, vol. 218, p. 117. https://doi.org/10.1016/j.jphotochem.2010.12.011

    Article  CAS  Google Scholar 

  31. Robson, K.C.D., Phillips, C.D., Patrick, B.O., et al., Dalton Trans., 2010, vol. 39, no. 10, p. 2573. https://doi.org/10.1039/b921153e

    Article  CAS  PubMed  Google Scholar 

  32. Gong, D., Wang, B., Jia, X., et al., Dalton Trans., 2014, vol. 43, no. 10, p. 4169. https://doi.org/10.1039/C3DT52708E

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment of the Southern Federal University in the field of science, project 0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Uraev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, T.V., Uraev, A.I., Lyssenko, K.A. et al. Synthesis, Structure, and Properties of Copper(II), Nickel(II), and Cobalt(II) Ketoiminate Chelates. Molecular and Crystal Structures of Bis[2-nitro-3-(8-quinolylimino)prop-1-enoxy]cobalt(II). Russ J Coord Chem 48, 210–217 (2022). https://doi.org/10.1134/S1070328422040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422040029

Keywords:

Navigation