Skip to main content
Log in

Antibacterial Films of Composite Materials Based on the Biocompatible Metal–Organic Framework MOF-5 and Hydrocolloids

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The preparation of a new type of packing for food products using biocompatible functional materials is based on the quality control and safety of food products. Composite films of the hydrocolloid matrix including kappa carrageenan and hydroxypropyl methylcellulose with particles of the biocompatible metal-organic framework MOF-5 bearing the antibacterial agent (sodium benzoate) immobilized in the pores are prepared. The manifested resistance of the prepared films to potentially pathogenic microorganisms provides wide prospects for manufacturing antimicrobial composite materials of food packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pop, O.L., Pop, C.R., Dufrechou, M., et al., Polymers, 2020, vol. 12, no. 1, p. 12.

    Article  CAS  Google Scholar 

  2. Idumah, C.I., Hassan, A., and Ihuoma, D.E., Polymer-Plastics Technol. Mater., 2019, vol. 58, no. 10, p. 1054.

    CAS  Google Scholar 

  3. Ozdemir, M. and Floros, J.D., Critic. Rev. Food Sci. Nutrition, 2004, vol. 44, no. 3, p. 185.

    Article  CAS  Google Scholar 

  4. Ahvenainen, R. and Hurme, E., Food Additives Contaminants, 1997, vol. 14, nos. 6–7, p. 753.

    Article  CAS  PubMed  Google Scholar 

  5. Yousefi, H., Su, H.-M., Imani, S.M., et al., ACS Sens., 2019, vol. 4, no. 4, p. 808.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, X., Valdeperez, D., Nazarenus, M., et al., Part. Part. Syst. Charact., 2015, vol. 32, no. 4, p. 408.

    Article  Google Scholar 

  7. Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., et al., Trends Food Sci. Technol., 2014, vol. 35, no. 1, p. 42.

    Article  CAS  Google Scholar 

  8. Cagri, A., Ustunol, Z., and Ryser, E.T., J. Food Protection, 2004, vol. 67, no. 4, p. 833.

    Article  CAS  Google Scholar 

  9. Brizio, A.P.D.R. and Prentice, C., Meat Sci., 2014, vol. 96, no. 3, p. 1219.

    Article  CAS  PubMed  Google Scholar 

  10. Smolander, M., Novel Food Packaging Techniques, Woodhead Publishing, 2003, p. 127.

    Google Scholar 

  11. Heising, J.K., Intelligent Packaging for Monitoring Food Quality: A Case Study on Fresh Fish, Wageningen: Wageningen Univ., 2014.

    Google Scholar 

  12. Priyadarshi, R., Ezati, P., and Rhim, J.-W., ACS Food Sci. Technol., 2021, vol. 1, no. 2, p. 124.

    CAS  Google Scholar 

  13. Sohail, M., Sun, D.-W., and Zhu, Z., Critic. Rev. Food Sci. Nutrition, 2018, vol. 58, no. 15, p. 2650.

    Article  Google Scholar 

  14. Kuswandi, B., Environ. Chem. Lett., 2017, vol. 15, no. 2, p. 205.

    Article  CAS  Google Scholar 

  15. Dickinson, E., Food Hydrocolloids, 2009, vol. 23, no. 6, p. 1473.

    Article  CAS  Google Scholar 

  16. Saha, D. and Bhattacharya, S., J. Food Sci. Technol., 2010, vol. 47, no. 6, p. 587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kralova, I. and Sjöblom, J., J. Dispersion Sci. Technol., 2009, vol. 30, no. 9, p. 1363.

    Article  CAS  Google Scholar 

  18. Olivas, G.I. and Barbosa-Cánovas, G.V., Critic. Rev. Food Sci. Nutrition, 2005, vol. 45, nos. 7–8, p. 657.

    Article  CAS  Google Scholar 

  19. Jiménez, A., Requena, R., Vargas, M., et al., Role of Materials Science in Food Bioengineering, Acad. Press, 2018, p. 263.

    Google Scholar 

  20. Zhang, S., Wei, F., and Han, X., New J. Chem., 2018, vol. 42, no. 21, p. 17756.

    Article  CAS  Google Scholar 

  21. Yaghi, O.M. and Li, H., J. Am. Chem. Soc., 1995, vol. 117, no. 41, p. 10401.

    Article  CAS  Google Scholar 

  22. Furukawa, H., Cordova, K.E., O’Keeffe, M., et al., Science, 2013, vol. 341, no. 6149, p. 1230444.

    Article  PubMed  CAS  Google Scholar 

  23. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., et al., Nature, 2003, vol. 423, no. 6941, p. 705.

    Article  CAS  PubMed  Google Scholar 

  24. Li, J.-R., Sculley, J., and Zhou, H.-C., Chem. Rev., 2012, vol. 112, no. 2, p. 869.

    Article  CAS  PubMed  Google Scholar 

  25. Peplow, M., Nature, 2015, vol. 520, no. 7546, p. 148.

    Article  CAS  PubMed  Google Scholar 

  26. Horcajada, P., Gref, R., Baati, T., et al., Chem. Rev., 2012, vol. 112, no. 2, p. 1232.

    Article  CAS  PubMed  Google Scholar 

  27. Horcajada, P., Chalati, T., Serre, C., et al., Nature Mater., 2010, vol. 9, no. 2, p. 172.

    Article  CAS  Google Scholar 

  28. Miller, S.R., Heurtaux, D., Baati, T., et al., Chem. Commun., 2010, vol. 46, no. 25, p. 4526.

    Article  CAS  Google Scholar 

  29. Shadjou, N. and Hasanzadeh, M., Mater. Sci. Eng. C, 2015, vol. 55, p. 401.

    Article  CAS  Google Scholar 

  30. Jiang, J., Babarao, R., and Hu, Z., Chem. Soc. Rev., 2011, vol. 40, no. 7, p. 3599.

    Article  CAS  PubMed  Google Scholar 

  31. McKinlay, A.C., Morris, R.E., Horcajada, P., et al., Angew. Chem. Int. Ed., 2010, vol. 49, no. 36, p. 6260.

    Article  CAS  Google Scholar 

  32. Zhao, J., Wei, F., Xu, W., et al., Appl. Surf. Sci., 2020, vol. 510, p. 145418.

    Article  CAS  Google Scholar 

  33. Chopra, S., Dhumal, S., Abeli, P., et al., Postharvest Biol. Technol., 2017, vol. 130, p. 48.

    Article  CAS  Google Scholar 

  34. Eddaoudi, M., Li, H., and Yaghi, O.M., J. Am. Chem. Soc., 2000, vol. 122, no. 7, p. 1391.

    Article  CAS  Google Scholar 

  35. McHugh, T.H., Avena-Bustillos, R., and Krochta, J.M., J. Food Sci., 1993, vol. 58, no. 4, p. 899.

    Article  CAS  Google Scholar 

  36. DIFFRAC.EVA, Karlsruhe: Bruker AXS GmbH, 2011.

  37. Coelho, A.A., TOPAS 4.2, Karlsruhe: Bruker AXS GmbH, 2009.

    Google Scholar 

  38. Huang, L., Wang, H., Chen, J., et al., Microporous Mesoporous Mater., 2003, vol. 58, no. 2, p. 105.

    Article  CAS  Google Scholar 

  39. Chen, B., Wang, X., Zhang, Q., et al., J. Mater. Chem., 2010, vol. 20, no. 18, p. 3758.

    Article  CAS  Google Scholar 

  40. Tranchemontagne, D.J., Hunt, J.R., and Yaghi, O.M., Tetrahedron, 2008, vol. 64, no. 36, p. 8553.

    Article  CAS  Google Scholar 

  41. Sánchez-Sánchez, M., Getachew, N., Díaz, K., et al., Green Chem., 2015, vol. 17, no. 3, p. 1500.

    Article  CAS  Google Scholar 

  42. Sun, G., Liang, T., Tan, W., et al., Food Hydrocolloids, 2018, vol. 85, p. 61.

    Article  CAS  Google Scholar 

  43. Cherrington, R. and Liang, J., Design and Manufacture of Plastic Components for Multifunctionality, Oxford: William Andrew, 2016.

    Google Scholar 

  44. Rhein-Knudsen, N., Ale, M.T., and Meyer, A.S., Marine Drugs, 2015, vol. 13, no. 6, p. 3340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental analysis was performed using equipment from the Center for molecular composition studies of INEOS RAS, supported by the Ministry of Science and Higher Education of the Russian Federation.

Funding

This research was supported by the Russian Science Foundation (project 20-73-10200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, A.M., Zakharchenko, E.N., Korlyukov, A.A. et al. Antibacterial Films of Composite Materials Based on the Biocompatible Metal–Organic Framework MOF-5 and Hydrocolloids. Russ J Coord Chem 48, 195–200 (2022). https://doi.org/10.1134/S1070328422030022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422030022

Keywords:

Navigation