Russian Journal of Coordination Chemistry

, Volume 43, Issue 5, pp 278–285 | Cite as

Synthesis and structure of mononuclear zinc complexes with pyridine-2-aldoxime

  • E. B. Coropceanu
  • L. Croitor
  • A. A. Ciloci
  • Zh. P. Tyurina
  • E. G. Dvornina
  • C. Z. Codreanu
  • M. S. Fonari
Article
  • 34 Downloads

Abstract

Three mononuclear different-ligand Zn(II) complexes, [Zn(CH3COO)2(PaoH)2] (I), [Zn(PaoH)2(DMSO)2][BF4]2 (II), and [Zn(NCS)2(PaoH)2] (III) (DMSO = dimethylsulfoxide) were prepared by the reaction of zinc acetate and tetrafluoroborate with pyridine-2-aldoxime (PaoH). The composition and structure of the complexes were confirmed by IR spectroscopy and X-ray diffraction. All compounds crystallize in the monoclinic system, compounds I and II have space group P21/n, while compound III has space group C2/c. In all compounds, the Zn coordination polyhedron is a distorted octahedron, which is formed by the N4O2 sets of donor atoms in I and II and by N6 in III. Complex I in the optimal concentration of 5–10 mg/L was found to stimulate the biosynthesis of standard (pH 4.7) amylases by the micromycete Aspergillus niger CNMN FD 06.

Keywords

coordination compounds crystal structure zinc cation pyridine-2-aldoxime stimulation of biosynthesis amylolytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Milios, C., Stamatatos, T., and Perlepes, S., Polyhedron, 2006, vol. 25, p. 134.CrossRefGoogle Scholar
  2. 2.
    Polyzou, C., Efthymiou, C., Escuer, A., et al., Pure Appl. Chem., 2013, vol. 85, p. 315.CrossRefGoogle Scholar
  3. 3.
    Zhang, S., Zhen, L., Xu, B., et al., Dalton Trans., 2010, vol. 39, p. 3563.CrossRefGoogle Scholar
  4. 4.
    Zhou, C.-L., Wang, Z.-M., Wang, B.-W., and Gao, S., Dalton Trans., 2012, vol. 41, p. 13620.CrossRefGoogle Scholar
  5. 5.
    Zheng, L., Zhang, S., Li, K., et al., J. Mol. Struct., 2010, vol. 984, p. 153.CrossRefGoogle Scholar
  6. 6.
    Escuer, A., Vlahopoulou, G., and Mautner, F.A., Dalton Trans., 2011, vol. 40, p. 10109.CrossRefGoogle Scholar
  7. 7.
    Konidaris, K., Katsoulakou, K., Kaplanis, M., et al., Dalton Trans., 2010, vol. 39, p. 4492.CrossRefGoogle Scholar
  8. 8.
    Mancin, M., Tecilla, P., and Tonellato, U., Langmuir, 2000, vol. 16, p. 227.CrossRefGoogle Scholar
  9. 9.
    Shih, T.-M., Skovira, J., and McDonough, J., Arch. Toxicol., 2009, vol. 83, p. 1083.CrossRefGoogle Scholar
  10. 10.
    Coropceanu, E., Croitor, L., Siminel, A., and Fonari, M., Inorg. Chem. Commun., 2011, vol. 14, p. 1528.CrossRefGoogle Scholar
  11. 11.
    Polyzou, C.D., Nikolaou, H., Papatriantafyllopoulou, C., et al., Dalton Trans., 2012, vol. 41, p. 13755.CrossRefGoogle Scholar
  12. 12.
    Holyn'ska, M. and Korabik, M., Eur. J. Inorg. Chem., 2013, vol. 31, p. 5469.CrossRefGoogle Scholar
  13. 13.
    Croitor, L., Coropceanu, E., Siminel, A., and Fonari, M., Polyhedron, 2013, vol. 60, p. 140.CrossRefGoogle Scholar
  14. 14.
    Croitor, L., Coropceanu, E., Masunov, A., et al., Cryst. Growth Des., 2014, vol. 14, p. 3935.CrossRefGoogle Scholar
  15. 15.
    Croitor, L., Grabco, D., Coropceanu, E., et al., Cryst-EngComm, 2015, vol. 17, p. 2450.CrossRefGoogle Scholar
  16. 16.
    Croitor, L., Coropceanu, E., Petuhov, O., et al., Dalton Trans., 2015, vol. 44, p. 7896.CrossRefGoogle Scholar
  17. 17.
    Papatriantafyllopoulou, C., Kostakis, G.E., Raptopoulou, C.P., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 2361.CrossRefGoogle Scholar
  18. 18.
    Torabi, A.A., Kian, R., Souldozi, A., and Welter, R., Z. Kristallogr.–New Cryst. Struct., 2005, vol. 220, p. 613.Google Scholar
  19. 19.
    Papatriantafyllopoulou, C., Raptopoulou, C., Terzis, A., et al., Z. Naturforsch., A: Phys. Sci., 2007, vol. 62, p. 1123.Google Scholar
  20. 20.
    Konidaris, K.F., Polyzou, C.D., Kostakis, G.E., et al., Dalton Trans., 2012, vol. 41, p. 2862.CrossRefGoogle Scholar
  21. 21.
    Polyzou, C., Lada, Z., Terzis, A., et al., Polyhedron, 2014, vol. 79, p. 29.CrossRefGoogle Scholar
  22. 22.
    Dermitzaki, D., Raptopoulou, C.P., Psycharis, V., et al., Dalton Trans., 2014, vol. 43, p. 14520.CrossRefGoogle Scholar
  23. 23.
    Martinez, L., Gancheff, J.S., Hahn, F.E., et al., Spectrochim. Acta, Part A, 2013, vol. 105, p. 439.CrossRefGoogle Scholar
  24. 24.
    Stamatatos, T., Katsoulakou, E., Terzis, A., et al., Polyhedron, 2009, vol. 28, p. 1638.CrossRefGoogle Scholar
  25. 25.
    Stoumpos, C., Stamatatos, T., Sartzi, H., et al., Dalton Trans., 2009, vol. 6, p. 1004.CrossRefGoogle Scholar
  26. 26.
    Papatriantafyllopoulou, C., Stamatatos, T., Efthymiou, C., et al., Inorg. Chem., 2010, vol. 49, p. 9743.CrossRefGoogle Scholar
  27. 27.
    Papatriantafyllopoulou, C., Stamatatos, T., Wernsdorfer, W., et al., Inorg. Chem., 2010, vol. 49, p. 10486.CrossRefGoogle Scholar
  28. 28.
    Papatriantafyllopoulou, C., Kostakis, G., Raptopoulou, C., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 2361.CrossRefGoogle Scholar
  29. 29.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, p. 112.Google Scholar
  30. 30.
    Deseatnic, A., Condruc, V., Bologa, O., et al., Patent MD2836, BIOPI, 2005, no.8.Google Scholar
  31. 31.
    Bershova, O.I. Mikroelementy i pochvennye mikroorganizmy (Nutrient Elements and Soil Mocroorganisms), Kiev: Naukova Dumka, 1967, p. 38.Google Scholar
  32. 32.
    Milios, C.J., Stamatatos, T.C., Kyritsis, P., et al., Eur. J. Inorg. Chem., 2004, p. 2885.Google Scholar
  33. 33.
    Milios, C.J., Kefalloniti, E., Raptopoulou, C.P., et al., Polyhedron, 2004, vol. 23, p. 83.CrossRefGoogle Scholar
  34. 34.
    Milios, C.J., Kyritsis, P., Raptopoulou, C.P., et al., Dalton Trans., 2005, p. 501.Google Scholar
  35. 35.
    Stoumpos, C.C., Stamatatos, T.C., Psycharis, V., et al., Polyhedron, 2008, vol. 27, p. 3703.CrossRefGoogle Scholar
  36. 36.
    Martinez, L., Gancheff, J.S., Hahn, F.E., et al., Spectrochim. Acta, Part A, 2013, vol. 105, p. 439.CrossRefGoogle Scholar
  37. 37.
    Holynska, M., Z. Kristallogr., 2012, vol. 227, p. 831.CrossRefGoogle Scholar
  38. 38.
    Liu, J., Acta Crystallogr, Sect. E: Struct. Rep. Online, 2014, vol. 70, p. 142.CrossRefGoogle Scholar
  39. 39.
    Si, Y., Acta Crystallogr, Sect. E: Struct. Rep. Online, 2012, vol. 68, p. m554.CrossRefGoogle Scholar
  40. 40.
    Shirvan, S.A. and Haydari Dezfuli, S., Acta Crystallogr, Sect. E: Struct. Rep. Online, 2012, vol. 68, p. m1080.CrossRefGoogle Scholar
  41. 41.
    Ran, J. and Tong, Y.-P., Struct. Chem., 2011, vol. 22, p. 1113.CrossRefGoogle Scholar
  42. 42.
    Konidaris, K.F., Bekiari, V., Katsoulakou, E., et al., Inorg. Chim. Acta, 2011, vol. 376, p. 470.CrossRefGoogle Scholar
  43. 43.
    Zhuang, R.R., Jian, F.F., and Wang, K.F., J. Iran. Chem. Soc., 2011, vol. 8, p. 388.CrossRefGoogle Scholar
  44. 44.
    Werner, M., Berner, J., and Jones, P.G., Acta Crystallogr., Sect. C; Cryst. Struct. Commun., 1996, vol. 52, p. 72.CrossRefGoogle Scholar
  45. 45.
    Gracheva, I.M. Tekhnologiya fermentnykh preparatov (Preparation of Enzyme Specimens), Moscow: Agropromizdat, 1987, p. 36.Google Scholar
  46. 46.
    Gracheva, I.M., Grachev, Yu.P., et al., Laboratornyi praktikum po tekhnologii fermentnykh preparatov (Laboratory Works on the Preparation of Enzyme Specimens), Moscow: Legk. Pishch. Prom., 1982, p. 57.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. B. Coropceanu
    • 1
    • 2
  • L. Croitor
    • 3
  • A. A. Ciloci
    • 4
  • Zh. P. Tyurina
    • 4
  • E. G. Dvornina
    • 4
  • C. Z. Codreanu
    • 2
  • M. S. Fonari
    • 3
  1. 1.Institute of ChemistryAcademy of Sciences of MoldovaChisinauMoldova
  2. 2.Tiraspol State UniversityChisinauMoldova
  3. 3.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauMoldova
  4. 4.Institute of Microbiology and BiotechnologyAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations