Skip to main content
Log in

InSAR Coseismic Deformation, Fault Slip Inversion and Coulomb Stress Evolution of the Qinghai Menyuan Earthquake on January 8, 2022, China

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

On January 8, 2022, an M6.9 earthquake occurred in Menyuan, Qinghai, which caused surface damage. In this paper, the line-of-sight (LOS) coseismic surface deformation field is obtained by the interferometric synthetic aperture radar (InSAR) of the Sentinel-1 satellite. Constrained by the InSAR surface deformation field, a Bayesian method based on sequential Monte Carlo sampling was used to invert the geometric parameters of seismogenic faults and the distribution of fault slip. Moment magnitude of the model is Mw6.6. The earthquake was determined to occur at a left-lateral strike-slip fault. Based on the historical strong earthquake dislocation model, the PSGRN/PSCMP program was used to calculate the Coulomb stress change at the epicenter of the 2022 Menyuan M6.9 earthquake caused by the surrounding historical strong earthquakes. The results show that the occurrence of the Gulang M8 earthquake in 1927, the Menyuan Mw5.7 in 1986 and the Menyuan Mw5.9 earthquake in 2016 caused a significant increase in Coulomb stress at the epicenter of the 2022 Menyuan earthquake. The coseismic and post-seismic Coulomb stress increases were greater than 0.01 MPa. Combined analysis of this result with regional tectonic stress, allows us to conclude that the 2022 Menyuan M6.9 earthquake occurred on the dynamic background of the continuous extrusion of the Indian plate towards the Eurasian plate, and the regional historical strong earthquake activity played a significant role in promoting it. The research results provide a theoretical basis for understanding the seismogenic background and dynamic mechanism of the 2022 Menyuan earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ali, S.T., Freed, A.M., Calais, E., Manaker, D.M., and McCann, W.R., Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation, Geophys. J. Int., 2008, vol. 174, no. 3, pp. 904–918. https://doi.org/10.1111/j.1365-246X.2008.03634.x

    Article  Google Scholar 

  2. Broerse, T., Riva, R., Simons, W., Govers, R., and Vermeersen, B., Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 7, pp. 5343–5361. https://doi.org/10.1002/2015JB011951

    Article  Google Scholar 

  3. Guo, P., Han Z J, Gao, F., Zhu, C., and Gai, H.L., A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan Plateau, Tectonics, 2020, vol. 39, no. 9, p. e2020Tc006064. https://doi.org/10.1029/2020TC006064

  4. Han, Z.J., Niu, P.F., Li, K.Z., and Lv, L.X., Preliminary acknowledgements on the Jan 8, 2022, Menyuan Ms6.9 earthquake, 2022.

  5. He, J.K., Lu, S.J., and Wang, W.M., Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions, Tectonophysics, 2013, vol. 584, pp. 257–266. https://doi.org/10.1016/j.tecto.2012.03.025

    Article  Google Scholar 

  6. He, W.G., Liu, B.C., Yuan, D.Y., and Yang, M., Research on slip rates of the Lenglongling active fault zone, Northwestern Seismological J., 2000, vol. 22, no. 2, pp. 90–97.

    Google Scholar 

  7. Hu, C.Z., Yang, P.X., Li, Z.M., Huang, S.T., Zhao, Y., Chen, D., Xiong, R.W., and Chen Q Y, Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai Ms6.4 earthquake, Chin. J. Geophys., 2016, vol. 59, no. 5, pp. 1637–1646. https://doi.org/10.1002/cjg2.20227

    Article  Google Scholar 

  8. Huang, M.H., Bürgmann, R., and Freed, A.M., Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau, Earth Planet. Sci. Lett., 2014, vol. 396, pp. 88–96. https://doi.org/10.1016/j.epsl.2014.04.003

    Article  Google Scholar 

  9. Ji, L., Liu, C.J., Xu, J., Liu, L., Long, F., and Zhang, Z.W., InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou Ms7.0 earthquake in China, Chin. J. Geophys., 2017, vol. 60, no. 10, pp. 4069–4082. https://doi.org/10.6038/cjg20171032

    Article  Google Scholar 

  10. Jia, K., Zhou, S.Y., Zhuang, J.C., and Jiang, C.S., Stress transfer along the western boundary of the Bayan Har block on the Tibet Plateau from the 2008 to 2020 Yutian earthquake sequence in China, Geophys. Res. Lett., 2021, vol. 48, no. 15, p. e2021GL094125. https://doi.org/10.1029/2021GL094125

  11. King, G.C.P., Stein, R.S., and Jian, L., Static stress changes and the triggering of earthquakes, Bull. Seismological Soc. Am., 1994, vol. 84, no. 3, pp. 935–953. https://doi.org/10.1029/94JB00611

    Article  Google Scholar 

  12. Li, Z.H., Han, B.Q., Liu, Z.J., Zhang, M.M., Yu, C., Chen, B., Liu, H.H., Du, J., Zhang, S.C., Zhu, W., Zhang, Q., and Peng, J.B., Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations, Geomatics Inf. Sci. Wuhan Univ., 2022, vol. 2022, no. 6, pp. 887–897. https://doi.org/10.13203/j.whugis20220037

    Article  Google Scholar 

  13. Li, Z.M., Gai, H.L., Li, X., Yuan, D.Y., Xie, H., Jiang, W.L., Li, Y.S., and Su, Q., Seismogenic fault and coseismic surface deformation of the Menyuan Ms6.9 earthquake in Qinghai,China, Acta Geologica Sin., 2022, vol. 96, no. 1, pp. 330–335. https://doi.org/10.19762/j.cnki.dizhixuebao.2022124

    Article  Google Scholar 

  14. Liu, J., Xu, X.W., Li, Y.F., and Ran, Y.K., On the completeness of paleoseismic records of strike-slip faults:an example from the Laohushan segment of the Haiyuan fault in Gansu,China,with a discussion of several problems in the paleoearthquake study, Geol. Bull. China, 2007, vol. 26, no. 6, pp. 650–660.

    Google Scholar 

  15. Ma, L., Principal features and seismic-tectonics of Qinghai Menyuan Ms 6.4 earthquake in 2016, Seismological Geomagnetic Obs. Res., 2017, vol. 38, no. 5, pp. 1–7.

    Google Scholar 

  16. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T., The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 1993, vol. 364, no. 6433, pp. 138–142. https://doi.org/10.1038/364138a0

    Article  Google Scholar 

  17. Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seismological Soc. Am., 1985, vol. 75, no. 4, pp. 1135–1154. https://doi.org/10.1785/BSSA0750041135

    Article  Google Scholar 

  18. Parsons, T. and Dreger, D.S., Static-stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California, Geophys. Res. Lett., 2000, vol. 27, no. 13, pp. 1949–1952. https://doi.org/10.1029/1999GL011272

    Article  Google Scholar 

  19. Pollitz, F.F., Banerjee, P., Bürgmann, R., Hashimoto, M., and Choosakul, N., Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes, Geophys. Res. Lett., 2006, vol. 33, no. 6, p. L06309. https://doi.org/10.1029/2005GL024558

    Article  Google Scholar 

  20. Qu, W., Liu, B., Zhang, Q., Gao, Yu., Chen, H., Wang, Q., and Hao, M., Sentinel-1 InSAR observations of co- and post-seismic deformation mechanisms of the 2016 Mw 5.9 Menyuan earthquake, Northwestern China, Adv. Space Res., 2021, vol. 68, no. 3, pp. 1301–1317. https://doi.org/10.1016/j.asr.2021.03.016

    Article  Google Scholar 

  21. Shan, B., Zheng, Y., Liu, C.L., Xie, Z.J., and Kong, J., Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake, Sci. China Earth Sci., 2017, vol. 60, no. 12, pp. 2181–2189. https://doi.org/10.1007/s11430-017-9125-2

    Article  Google Scholar 

  22. Shao, Z.G., Fu, R., Xue, T.X., and Huang, J., The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun Ms 8.1 earthquake, Chin. J. Geophys., 2008, vol. 51, no. 3, pp. 805–816. https://doi.org/10.3321/j.issn:0001-5733.2008.03.021

    Article  Google Scholar 

  23. Song, X.G., Zhang, Y.F., Shan, X.J., Liu, Y.H., Gong, W.Y., and Qu, C.Y., Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu fault, Geophys. Res. Lett., 2019, vol. 46, no. 8, pp. 4212–4220. https://doi.org/10.1029/2019GL082045

    Article  Google Scholar 

  24. Stein, R.S., The role of stress transfer in earthquake occurrence, Nature, 1999, vol. 402, no. 6762, pp. 605–609. https://doi.org/10.1038/45144

    Article  Google Scholar 

  25. Sun, J., Shi, Y., Shen, Z., Xu, X.W., and Liang, F., Parameter inversion of the 1997 Mani earthquake from Insar co-seismic deformation field based on linear elastic dislocation model-II. Slip distribution inversion, Chin. J. Geophys., 2007, vol. 50, no. 5, pp. 1190–1198. https://doi.org/10.1002/cjg2.1138

    Article  Google Scholar 

  26. Verdecchia, A., Pace, B., Visini, F., Scotti, O., Peruzza, L., and Benedetti, L., The role of viscoelastic stress transfer in long-term earthquake cascades: Insights after the Central Italy 2016-2017 seismic sequence, Tectonics, 2018, vol. 37, no. 10, pp. 3411–3428. https://doi.org/10.1029/2018TC005110

    Article  Google Scholar 

  27. Wan, Y.G. and Shen, Z.K., Static Coulomb stress changes on faults caused by the 2008 Mw 7.9 Wenchuan, China earthquake, Tectonophysics, 2010, vol. 491, no. 1, pp. 105–118. https://doi.org/10.1016/j.tecto.2010.03.017

    Article  Google Scholar 

  28. Wang, H., Jing, L.Z., Ng, A.H.M., Ge, L., Javed, F., Long, F., Aoudia, A., Feng, J., and Shao, Z., Sentinel-1 observations of the 2016 Menyuan earthquake: A buried reverse event linked to the left-lateral Haiyuan fault, Int. J. Appl. Earth Obs. Geoinformation, 2017, vol. 61, pp. 14–21. https://doi.org/10.1016/j.jag.2017.04.011

    Article  Google Scholar 

  29. Wang, M. and Shen, Z.K., Present-day crustal deformation of continental China derived from GPS and its tectonic implications, J. Geophys. Res.: Solid Earth, 2019, vol. 125, no. 2, p. e2019JB018774. https://doi.org/10.1029/2019JB018774

  30. Wang, R.J., Lorenzo-Martín, F., and Roth, F., PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory, Comput. Geosci., 2006, vol. 32, no. 4, pp. 527–541. https://doi.org/10.1016/j.cageo.2005.08.006

    Article  Google Scholar 

  31. Wen, Y.M., Xiao, Z.H., He, P., Zang, J.F., and Xu, C.J., Source characteristics of the 2020 Mw 7.4 Oaxaca, Mexico, earthquake estimated from GPS, InSAR, and teleseismic waveforms, Seismological Res. Lett., 2021, vol. 92, no. 3, pp. 1900–1912. https://doi.org/10.1785/0220200313

    Article  Google Scholar 

  32. Wessel, P. and Smith, W.H.F., New, improved version of generic mapping tools released, EOS, Trans. Am. Geophys. Union, 1998, vol. 79, no. 47, pp. 579–579. https://doi.org/10.1029/98EO00426

    Article  Google Scholar 

  33. Yuan, S., He, P., Wen, Y.M., and Xu, C.J., Integrated InSAR and strain tensor to estimate three-dimensional coseismic displacements associated with the 2016 MW7.0 Kumamoto earthquake, Chin. J. Geophys., 2020, vol. 63, no. 4, pp. 1340–1356. https://doi.org/10.6038/cjg2020N0308

    Article  Google Scholar 

  34. Zhang, M., Gao, H., Niu, Y.F., Qu, F.F., Wan, H.L., and Zhang, W., Coseismic deformation focal mechanisms inversion for 2016 Menyuan earthquake by DInSAR observations, Prog. Geophys., 2017, vol. 32, no. 3, pp. 1089–1094. https://doi.org/10.6038/pg20170319

    Article  Google Scholar 

  35. Zhu, A.Y., Wang, Y.Z., Li, Y.H., and Zhang, D.N., Numerical simulation on the mechanism of the Madoi, Qinghai MS7.4 earthquake constrained by InSAR deformation, Chin. J. Geophys., 2021, vol. 64, no. 12, pp. 4548–4561. https://doi.org/10.6038/cjg2021P0452

    Article  Google Scholar 

  36. Zhu, Y.G., Diao, F.Q., Fu, Y.C., Liu, C.L., and Xiong, X., Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations, Sci. China Earth Sci., 2021, vol. 64, no. 8, pp. 1363–1370. https://doi.org/10.1007/s11430-021-9808-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

ESA provides Sentinel-1A radar data for this study (https://search.asf.alaska.edu/), the graphic files used in this paper are drawn by GMT (Wessel and Smith, 1998). We used ENVI (https://www.geoscene.cn/) for SAR data processing and; and PSGRN/PSCMP (Wang et al., 2006) for the Coulomb stress calculation. Thank you all here.

Funding

This study was partially supported by the National Natural Science Foundation of China (no. 51908517).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: Gang Yang; data collection: Song Yu, Dongning Lei; analysis and interpretation of results: Jianchao Wu,·Yongjian Cai; draft manuscript preparation: Gang Yang. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Gang Yang.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

AVAILABILITY OF DATA AND MATERIAL

The European Space Agency owns the copyright of Sentinel-1 SAR data, and the Alaska Satellite Facility provides the downloading service through the https://search.asf.alaska.edu/.

Additional information

Abbreviations: LOS: line-of-sight; InSAR: interferometric synthetic aperture radar; GPS: Global Positioning System.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Yu, S., Lei, D. et al. InSAR Coseismic Deformation, Fault Slip Inversion and Coulomb Stress Evolution of the Qinghai Menyuan Earthquake on January 8, 2022, China. Izv., Phys. Solid Earth 59, 1113–1124 (2023). https://doi.org/10.1134/S1069351323060241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323060241

Keywords:

Navigation