Skip to main content
Log in

On the Statistical Significance Test for the Procedure of Polarity Classification by Types of Acoustic Emission Sources

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Using a mathematical statistics approach, we review the procedure for type classification of acoustic emission (AE) events into shear, tension, and collapse, proposed by Zang et al. (1998). The procedure is based on counting the signs of first pulses of waves arriving at acoustic sensors and is widely used in rock physics experiments. Under the assumption that the determination errors of first-pulse signs at sensors have uniform and independent distribution , the statistical significance and power of the type separation test are evaluated for a given number of sensors used. We consider and compare three methods of the construction of a statistical test based on the P-value approach and symmetric and asymmetric statistical hypothesis tests. Considering the results of the statistical study, we propose some practical recommendations for selecting a threshold to classify AE event types in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Abubakirov, I.R. and Pavlov, V.M., Determining the double couple moment tensor for Kamchatka earthquakes from regional seismic waveforms, Izv., Phys. Solid Earth, 2021, vol. 57, no. 3, pp. 332–347. https://doi.org/10.1134/S1069351321030010

    Article  Google Scholar 

  2. Aki, K. and Richards, P.G., Quantitative Seismology, 2nd ed., Sausalito: Univ. Science Books, 2002.

    Google Scholar 

  3. Amrhein, V., Korner-Nievergelt, F., and Roth, T., The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research, PeerJ, 2017, Article ID 5:e3544. https://doi.org/10.7717/peerj.3544

    Article  Google Scholar 

  4. Borovkov, A.A., Mathematical Statistics, Amsterdam: Gordon and Breach, 1998.

    Google Scholar 

  5. Charalampidou, E.-M., Stanchits, S., Kwiatek, G., and Dresen, G., Brittle failure and fracture reactivation in sandstone by fluid injection, Eur. J. Environ. Civ. Eng., 2015, vol. 19, no. 5, pp. 564–579. https://doi.org/10.1080/19648189.2014.896752

    Article  Google Scholar 

  6. Clarke, J., Adam, L., Sarout, J., van Wijk, K., Kennedy, B., and Dautriat, J., The relation between viscosity and acoustic emissions as a laboratory analogue for volcano seismicity, Geology, 2019, vol. 47, no. 6, pp. 499–503. https://doi.org/10.1130/G45446.1

    Article  Google Scholar 

  7. Crust and Lithosphere Dynamics, vol. 6 of Treatise on Geophysics, Schubert, G. and Watts, A.B., Eds., San Diego: Elsevier, 2015.

    Google Scholar 

  8. Dreger, D.S., Berkeley seismic moment tensor method, uncertainty analysis, and study of non-double-couple seismic events, in Moment Tensor Solutions: A Useful Tool for Seismotectonics, D’Amico, S., Ed., Springer Natural Hazards Ser., Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-77359-9_4

  9. Earthquake Seismology, vol. 4 of Treatise on Geophysics, Kanamori, H. and Schubert, G., Eds., Amsterdam: Elsevier, 2009.

    Google Scholar 

  10. Emanov, A.F., Emanov, A.A., Chechel’nitskii, V.V., Shevkunova, E.V., Radziminovich, Ya.B., Fateev, A.V., Kobeleva, E.A., Gladyshev, E.A., Arapov, V.V., Artemova, A.I., and Podkorytova, V.G., The Khuvsgul earthquake of January 12, 2021 (M W = 6.7, M L = 6.9) and early aftershocks, Izv., Phys. Solid Earth, 2022, vol. 58, no. 1, pp. 59–73. https://doi.org/10.1134/S1069351322010025

    Article  Google Scholar 

  11. Everitt, B.S. and Skrondal, A., The Cambridge Dictionary of Statistics, 2nd ed., Cambridge: Cambridge Univ. Press, 2002.

    Google Scholar 

  12. Fortin, J., Stanchits, S., Dresen, G., and Gueguen, Y., Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation, Pure Appl. Geophys., 2009, vol. 166, no. 5–7, pp. 823–841. https://doi.org/10.1007/s00024-009-0479-0

    Article  Google Scholar 

  13. Graham, C.C., Stanchits, S., Main, I.G., and Dresen, G., Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, no. 1, pp. 161–169.

    Article  Google Scholar 

  14. Kolář, P., Petružálek, M., Lokajíček, T., Šílený, J., Jechumtálová, Z., Adamová, P., and Boušková, A., Acoustic emission events interpreted in terms of source directivity, Pure Appl. Geophys., 2020, vol. 177, no. 9, pp. 4271–4288. https://doi.org/10.1007/s00024-020-02517-w

    Article  Google Scholar 

  15. Kostrov, B.V. and Das, S., Principles of Earthquake Source Mechanics, Cambridge Monographs on Mechanics Ser., Cambridge: Cambridge Univ. Press, 2005.

  16. Kwiatek, G., Charalampidou, E.-M., Dresen, G., and Stanchits, S., An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle, Int. J. Rock. Mech. Min. Sci., 2014, vol., 65, pp. 153–161. https://doi.org/10.1016/j.ijrmms.2013.11.005

    Article  Google Scholar 

  17. Lei, X., Nishizawa, O., Kusunose, K., and Satoh, T., Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes, J. Phys. Earth, 1992, vol. 40, no. 6, pp. 617–634. https://doi.org/10.4294/jpe1952.40.617

    Article  Google Scholar 

  18. Moment Tensor Solutions: A Useful Tool for Seismotectonics, D’Amico, S., Ed., Springer Natural Hazards Ser., Cham: Springer, 2018.

    Google Scholar 

  19. Naoi, M., Chen, Y., Yamamoto, K., Morishige, Y., Imakita, K., Tsutumi, N., Kawakata, H., Ishida, T., Tanaka, H., Arima, Y., Kitamura, S., and Hyodo, D., Tensile-dominant fractures observed in hydraulic fracturing laboratory experiment using eagle ford shale, Geophys. J. Int., 2020, vol. 222, no. 2, pp. 769–780. https://doi.org/10.1093/gji/ggaa183

    Article  Google Scholar 

  20. Ohtsu, M., Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test, J. Geophys. Res.: Solid Earth, 1991, vol. 96, no. B4, pp. 6211–6221. https://doi.org/10.1029/90JB02689

    Article  Google Scholar 

  21. Ohtsu, M., Source mechanisms, in Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, Grosse. C.U. and Ohtsu, M., Eds., Berlin: Springer, 2008a, pp. 149–174. https://doi.org/10.1007/978-3-540-69972-9_7

  22. Ohtsu, M., Moment tensor analysis, in Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, Grosse. C.U. and Ohtsu, M., Eds., Berlin: Springer, 2008b, pp. 175–200. https://doi.org/10.1007/978-3-540-69972-9_8

  23. Ohtsu, M., Isoda, T., and Tomoda, Y., Acoustic emission techniques standardized for concrete structures, J. Acoust. Emiss., 2007, vol. 25, pp. 21–32.

    Google Scholar 

  24. Patonin, A.V. and Shikhova, N.M., Variations of types of acoustic emission signals during the destruction of rocks in a laboratory experiment, Proc. 19th Int. Conf. “Physical-Chemical and Petrophysical Studies in the Earth’s Sciences,” Borok, 2018, Moscow: IGEM RAN, 2018, pp. 254–256.

  25. Patonin, A.V., Ponomarev, A.V., and Smirnov, V.B., A laboratory instrumental complex for studying the physics of the destruction of rocks, Seism. Instrum., 2014, vol. 50, no. 1, pp. 9–19. https://doi.org/10.3103/S0747923914010046

    Article  Google Scholar 

  26. Petružálek, M., Jechumtálová, Z., Kolář, P., Adamová, P., Svitek, T., Šílený, J., and Lokajíček, T., Acoustic emission in a laboratory: mechanism of microearthquakes using alternative source models, J. Geophys. Res.: Solid Earth, 2018, vol. 123, no. 6, pp. 4965–4982. https://doi.org/10.1029/2017JB015393

    Article  Google Scholar 

  27. Petružálek, M., Lokajíček, T., Svitek, T., Jechumtálová, Z., Kolář, P., and Šílený, J., Fracturing of migmatite monitored by acoustic emission and ultrasonic sounding, Rock. Mech. Rock. Eng., 2019, vol. 52, no. 1, pp. 47–59. https://doi.org/10.1007/s00603-018-1590-2

    Article  Google Scholar 

  28. Petružálek, M., Jechumtálová, Z., Šílený, J., Kolář, P., Svitek, T., Lokajíček, T., Turková, I., Kotrlý, M., and Onysko, R., Application of the shear-tensile source model to acoustic emissions in Westerly granite, Int. J. Rock. Mech. Min. Sci., 2020, vol. 128, Article ID 104246. https://doi.org/10.1016/j.ijrmms.2020.104246

    Article  Google Scholar 

  29. Sondergeld, C.H. and Estey, L.H., Source mechanisms and microfracturing during uniaxial cycling of rock, Pure Appl. Geophys., 1982, vol. 120, no. 1, pp. 151–166. https://doi.org/10.1007/BF00879434

    Article  Google Scholar 

  30. Stanchits, S. and Dresen, G., Advanced acoustic emission analysis of brittle and porous rock fracturing, Proc. EPJ Web of Conferences, vol. 6, Brémand, F., Ed., Poitiers: EDP Sciences, 2010, Article ID 22010. https://doi.org/10.1051/epjconf/20100622010

  31. Stanchits, S., Vinciguerra, S., and Dresen, G., Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl. Geophys., 2006, vol. 163, no. 5–6, pp. 975–994. https://doi.org/10.1007/s00024-006-0059-5

    Article  Google Scholar 

  32. Stanchits, S., Mayr, S., Shapiro, S., and Dresen, G., Fracturing of porous rock induced by fluid injection, Tectonophysics, 2011, vol. 503, no. 1–2, pp. 129–145. https://doi.org/10.1016/j.tecto.2010.09.022

    Article  Google Scholar 

  33. Stein, S. and Wysession, M., An Introduction to Seismology, Earthquakes and Earth Structure, Malden: Blackwell, 2003.

    Google Scholar 

  34. Stern, H.S., A test by any other name: P values, Bayes factors, and statistical inference, Multivar. Behav. Res., 2016, vol. 51, no. 1, pp. 23–29. https://doi.org/10.1080/00273171.2015.1099032

    Article  Google Scholar 

  35. Stierle, E., Vavryčuk, V., Kwiatek, G., Charalampidou, E.-M., and Bohnhoff, M., Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy, Geophys. J. Int., 2016, vol. 205, no. 1, pp. 38–50. https://doi.org/10.1093/gji/ggw009

    Article  Google Scholar 

  36. Timoshkina, E.P., Mikhailov, V.O., Smirnov, V.B., Volkova, M.S. and Khairetdinov S.A., Model of the rupture surface of the Khuvsgul earthquake of January 12, 2021 from InSAR data., Izv., Phys. Solid Earth, 2022, vol. 58, no. 1, pp. 74–79. https://doi.org/10.1134/S1069351322010098

    Article  Google Scholar 

  37. Udías, A. and Buforn, E., Principles of Seismology, Cambridge: Cambridge Univ. Press, 2018.

    Google Scholar 

  38. Udías, A., Madariaga, R, and Buforn, E., Source Mechanisms of Earthquakes: Theory and Practice, Cambridge: Cambridge Univ. Press, 2014.

    Book  Google Scholar 

  39. Zang, A., Wagner, C.F., and Dresen, G., Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure, J. Geophys. Res.: Solid Earth, 1996, vol. 101, no. B8, pp. 17507–17521.

    Article  Google Scholar 

  40. Zang, A., Wagner, C.F., Stanchits, S., Dresen, G., Andresen, R., and Haidekker, M.A., Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads, Geophys. J. Int., 1998, vol. 135, no. 3, pp. 1113–1130. https://doi.org/10.1046/j.1365-246X.1998.00706.x

    Article  Google Scholar 

  41. Zang, A., Wagner, C.F., Stanchits, S., Janssen, C., and Dresen, G., Fracture process zone in granite, J. Geophys. Res.: Solid Earth, 2000, vol. 105, no. B10, pp. 23651–23661.

    Article  Google Scholar 

  42. Zhang, B., Tian, X., Ji, B., Zhao, J., Zhu, Z., and Tin, S., Study on microseismic mechanism of hydro-fracture propagation in shale, J. Pet. Sci. Eng., 2019, vol. 178, pp. 711–722. https://doi.org/10.1016/j.petrol.2019.03.085

    Article  Google Scholar 

  43. Zhuang, L. and Zang, A., Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes, Earth-Sci. Rev., 2021, vol. 216, Article ID 103580. https://doi.org/10.1016/j.earscirev.2021.103580

    Article  Google Scholar 

Download references

Funding

The study was carried out under the State contract of the Faculty of Physics of the Moscow State University and the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. The laboratory experiments initiating this study were conducted in the Center of Shared Research Facilities “Petrophysics, Geomechanics and Paleomagnetism” IPE RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Smirnov.

Ethics declarations

The authors declare that they have no conflict of interest.

APPENDIX

APPENDIX

From formula (7),

$$\begin{gathered} ~\beta = P\left( {{{m}_{0}} < {{\eta }} < n - {{m}_{0}}{\text{|}}{{H}_{1}}} \right) \\ = \mathop \sum \limits_{k = {{m}_{0}} + 1}^{n - \left( {{{m}_{0}} + 1} \right)} C_{n}^{k}{{p}^{k}}{{\left( {1 - p} \right)}^{{n - k}}}. \\ \end{gathered} $$

For convenience, we denote \(m = \left( {{{m}_{0}} + 1} \right)\), then

$$~\beta = \mathop \sum \limits_{k = m}^{n - m} C_{n}^{k}{{p}^{k}}{{\left( {1 - p} \right)}^{{n - k}}}.$$

Let us find the maximum as a function of p. Note that β has a meaning of probability, therefore, \(0 \leqslant \beta \leqslant 1\). At \(p = 0\) and \(p = 1\) , we obtain \(\beta = 0\). As β is not an identical zero at \(0 < p < 1\), from the condition \(\frac{{\partial \beta }}{{\partial p}} = 0\) we can determine the value corresponding to the maximum β as a function of\(p\).

Let us find the respective derivative:

$$\begin{gathered} \frac{{\partial \beta }}{{\partial p}} = \frac{\partial }{{\partial p}}\left( {\mathop \sum \limits_{k = m}^{n - m} C_{n}^{k}{{p}^{k}}{{{\left( {1 - p} \right)}}^{{n - k}}}} \right) = \mathop \sum \limits_{k = m}^{n - m} \frac{{n!}}{{k!\left( {n - k} \right)!}} \\ \times \,\,\left( {k{{p}^{{k - 1}}}{{{\left( {1 - p} \right)}}^{{n - k}}} - \left( {n - k} \right){{p}^{k}}{{{\left( {1 - p} \right)}}^{{n - k - 1}}}} \right) \\ = n!\mathop \sum \limits_{k = m}^{n - m} \left( {\frac{{{{p}^{{k - 1}}}{{{\left( {1 - p} \right)}}^{{n - 1 - \left( {k - 1} \right)}}}}}{{\left( {k - 1} \right)!\left( {n - 1 - \left( {k - 1} \right)} \right)!}} - \frac{{{{p}^{k}}{{{\left( {1 - p} \right)}}^{{n - 1 - k}}}}}{{k!\left( {n - 1 - k} \right)!}}} \right). \\ \end{gathered} $$

We split the expression into two parts:

$${{\varphi }_{1}} = \mathop \sum \limits_{k = m}^{n - m} \frac{{{{p}^{{k - 1}}}{{{\left( {1 - p} \right)}}^{{n - 1 - \left( {k - 1} \right)}}}}}{{\left( {k - 1} \right)!\left( {n - 1 - \left( {k - 1} \right)} \right)!}}~,$$
$${{\varphi }_{2}} = \mathop \sum \limits_{k = m}^{n - m} \frac{{{{p}^{k}}{{{\left( {1 - p} \right)}}^{{n - 1 - k}}}}}{{k!\left( {n - 1 - k} \right)!}}~.$$

Then \(\frac{{\partial \beta }}{{\partial p}} = ~\,\,n!\left( {{{\varphi }_{1}} - {{\varphi }_{2}}} \right)\). In \({{\varphi }_{1}}\) we replace the summation variable \(k{\kern 1pt} ' = k - 1\), so that the form of sum \({{{{\varphi }}}_{1}}\) is as similar as possible to \({{{{\varphi }}}_{2}}\):

$${{\varphi }_{1}} = \mathop \sum \limits_{k' = m - 1}^{n - 1 - m} \frac{{{{p}^{{k{\kern 1pt} '}}}{{{\left( {1 - p} \right)}}^{{n - 1 - k{\kern 1pt} '}}}}}{{k{\kern 1pt} '!\left( {n - 1 - k{\kern 1pt} '} \right)!}}~.$$

It can be seen that the sums in \({{\varphi }_{1}}\) and \({{\varphi }_{2}}\) differ only by the terms with \(k{\kern 1pt} ' = m - 1\) and \(k = n - m\). Since \({{\varphi }_{1}}\) and \({{\varphi }_{2}}\) are present in the formula for \(\frac{{\partial \beta }}{{\partial p}}\) with opposite signs, therefore, in \(\frac{{\partial \beta }}{{\partial p}}\), all the similar terms of sums \({{\varphi }_{1}}\) and \({{\varphi }_{2}}\) are cancelled. Thus, we can record

$$\begin{gathered} \frac{{\partial \beta }}{{\partial p}} = ~\,\,n!\left( {\frac{{{{p}^{{m - 1}}}{{{\left( {1 - p} \right)}}^{{n - 1 - \left( {m - 1} \right)}}}}}{{\left( {m - 1} \right)!\left( {n - 1 - \left( {m - 1} \right)} \right)!}}} \right. \\ \left. { - \,\,\frac{{{{p}^{{n - m}}}{{{\left( {1 - p} \right)}}^{{n - 1 - \left( {n - m} \right)}}}}}{{\left( {n - m} \right)!\left( {n - 1 - \left( {n - m} \right)} \right)!}}} \right) \\ = \frac{{n!{{p}^{{m - 1}}}{{{\left( {1 - p} \right)}}^{{m - 1}}}}}{{\left( {m - 1} \right)!\left( {n - m} \right)!}}\left( {{{{\left( {1 - p} \right)}}^{{n + 1 - 2m}}} - {{p}^{{n + 1 - 2m}}}} \right). \\ \end{gathered} $$

We use an abridged multiplication formula \({{a}^{n}} - {{b}^{n}} = \left( {a - b} \right)\) \(\left( {{{a}^{{n - 1}}} + {{a}^{{n - 2}}}b + \cdots + a{{b}^{{n - 2}}} + {{b}^{{n - 1}}}} \right)\) to convert the last multiplier in the above formula. This yields

$$\begin{gathered} \frac{{\partial \beta }}{{\partial p}} = \frac{{n!{{p}^{{m - 1}}}{{{\left( {1 - p} \right)}}^{{m - 1}}}}}{{\left( {m - 1} \right)!\left( {n - m} \right)!}}\left( {\left( {1 - p} \right) - p} \right) \\ \times \,\,\left( {{{{\left( {1 - p} \right)}}^{{n - 2m}}} + p{{{\left( {1 - p} \right)}}^{{n - 1 - 2m}}}} \right. \\ + \left. { \ldots + {{p}^{{n - 1 - 2m}}}\left( {1 - p} \right) + {{p}^{{n - 2m}}}} \right). \\ \end{gathered} $$

In this formula, at \(0 < p < 1\), only the multiplier \(\left( {\left( {1 - p} \right) - p} \right) = 1 - 2p\) can be zero, which is true at \(p = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}\). Thus, \(\frac{{\partial \beta }}{{\partial p}} = 0\) at \(p = \)\({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}\), therefore, the probability β as a function of \(p\) has a maximum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.B., Isaeva, A.V., Kartseva, T.I. et al. On the Statistical Significance Test for the Procedure of Polarity Classification by Types of Acoustic Emission Sources. Izv., Phys. Solid Earth 59, 49–63 (2023). https://doi.org/10.1134/S1069351323010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323010056

Keywords:

Navigation