Skip to main content
Log in

Depths to Lithospheric Magnetic Sources and Lithospheric Thermal Regime under the East Siberian Sea

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—We present the results of studying the depths to lithospheric magnetic sources under the East Siberian Sea. The azimuthally-averaged Fourier power spectra of geomagnetic anomalies have been calculated from the global model EMAG2v3, which is the most current compilation of marine, aeromagnetic, ground, and satellite geomagnetic surveys. The depths to the centroid, the upper and lower boundaries of the magnetoactive layer have been calculated from the obtained spectra by the centroid method. The analysis of the results included comparing the depth distributions with known data on the thicknesses of sediments and the Earth’s crust, the depths of regional earthquake hypocenters, the surface heat flow, and the tectonic structure of the study region. It has been concluded that the depth to the upper boundary of the magnetoactive layer varies from about 0.4 km under the De Long High to 7 km under the New Siberian and East Siberian sedimentary basins. The depth to the lower boundary of the lithospheric magnetic sources varies from about 25 km under the De Long massif and the Podvodnikov Basin to 43 km under the New Siberian-Chukchi fold belt. In the considered territory, the lithospheric magnetoactive layer is located entirely within the Earth’s crust under the continent, the New Siberian Islands, the De Long High, and the western section of the East Siberian Sea shelf. The upper mantle is magnetic under the eastern section of the shelf and the Podvodnikov Basin. The obtained results indicate stronger warming of the lithosphere in the north of the study territory: under the Podvodnikov Basin and the De Long massif, characterized by suboceanic and continental crustal types, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aboud, E., Alotaibi, A.M., and Saud, R., Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia, Asian J. Earth Sci., 2016, vol. 128, pp. 42–53. https://doi.org/10.1016/j.jseaes.2016.07.025

    Article  Google Scholar 

  2. Amante, C. and Eakins, B.W., ETOPO1. 1 Arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, Boulder: National Geophysical Data Center, NOAA, 2009. https://doi.org/10.7289/V5C8276M

  3. Arnaiz-Rodríguez, M.S. and Orihuela, N., Curie point depth in Venezuela and the Eastern Caribbean, Tectonophysics, 2013, vol. 590, pp. 38–51. https://doi.org/10.1016/j.tecto.2013.01.004

    Article  Google Scholar 

  4. Artemieva, I.M., Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, nos. 1–4, pp. 245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  5. Avetisov, G.P., Some aspects of lithospheric dynamics of Laptev Sea, Izv. Ross. Akad. Nauk, Fiz. Zemli, 1993, vol. 29, no. 5, pp. 28–38.

    Google Scholar 

  6. Bansal, A.R., Gabriel, G., Dimri, V.P., and Krawczyk, C.M., Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany, Geophysics, 2011, vol. 76, no 3, pp. L11–L22. https://doi.org/10.1190/1.3560017

    Article  Google Scholar 

  7. Bansal, A.R., Anand, S.P., Rajaram, M., Rao, V.K., and Dimri, V.P., Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources, Tectonophysics, 2013, vol. 603, pp. 155–161. https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  8. Bhattacharyya, B.K. and Leu, L.-K., Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures, Geophysics, 1975a, vol. 40, no. 6, pp. 993–1013.

    Article  Google Scholar 

  9. Bhattacharyya, B.K. and Leu, L.-K., Analysis of magnetic anomalies over Yellowstone national park: mapping of Curie point isothermal surface for geothermal reconnaissance, J. Geophys. Res., 1975b, vol. 80, no. 32, pp. 4461–4465.

    Article  Google Scholar 

  10. Bouligand, C., Glen, J.M.G., and Blakely, J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res.: Solid Earth, 2009, vol. 114, no. B11, Paper ID B11104. https://doi.org/10.1029/2009JB006494

  11. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, no. 1, pp. 56–72. https://doi.org/10.1093/gji/ggx144

    Article  Google Scholar 

  12. Drachev, S.S., Fold belts and sedimentary basins of the Eurasian Arctic, αrktos 2016, vol. 2, no. 1, Paper ID 21. https://doi.org/10.1007/s41063-015-0014-8

  13. Drachev, S.S., Elistratov, A.V., and Savostin, L.A., Structure and seismostratigraphy of the East Siberian sea shelf along the Indigirka Bay-Jannetta Island seismic profile, Dokl. Earth Sci., 2001, vol. 377A, no. 3, pp. 293–297.

    Google Scholar 

  14. Drachev, S.S., Malyshev, N.A., and Nikishin, A.M., Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview, Petroleum Geology: from Mature Basins to New Frontiers, Vining, B.A. and Pickering, S.C., Eds., Proc. Petroleum Geology Conference series, vol. 7, London: Geol. Soc., 2010, pp. 591–619. https://doi.org/10.1144/0070591

  15. Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Conder, J.A., and Ionov, D.A., The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources, Geophys. Res. Lett., 2013, vol. 40, no. 1, pp. 105–110. https://doi.org/10.1029/2012GL054100

    Article  Google Scholar 

  16. Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., and Conder, J.A., Eight good reasons why the uppermost mantle could be magnetic, Tectonophysics, 2014, vol. 624–625, pp. 3–14. https://doi.org/10.1016/j.tecto.2014.01.004

    Article  Google Scholar 

  17. Filippova, A.I., Golubev, V.A., and Filippov, S.V., Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  Google Scholar 

  18. Fowler, C.M.R., The Solid Earth: An Introduction to Global Geophysics, Cambridge: Cambridge Univ. Press., 2005.

    Google Scholar 

  19. Franke, D., Hinz, K., and Reichert, C., Geology of the East Siberian Sea, Russian Arctic, from seismic images: structures, evolution, and implications for the evolution of the Arctic Ocean Basin, J. Geophys. Res.: Solid Earth, 2004, vol. 109, no. B7, Paper ID B07106. https://doi.org/10.1029/2003JB002687

  20. Friedman, S.A., Feinberg, J.M., Ferré, E.C., Demory, F., Martín-Hernández, F., Conder, J.A., and Rochette, P., Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior, Tectonophysics, 2014, vol. 624–625, pp. 15–23. https://doi.org/10.1016/j.tecto.2014.04.023

    Article  Google Scholar 

  21. Gaina, C., Werner, S., Saltus, R., and Maus, S., Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic, Geol. Soc. Lond. Mem., 2011, vol. 35, no. 1, pp. 39–48.

    Article  Google Scholar 

  22. Gaina, C., Medvedev, S., Torsvik, T.H., Koulakov, I., and Werner, S.C., 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models, Surv. Geophys., 2014, vol. 35, no. 5, pp. 1095–1122. https://doi.org/10.1007/s10712-013-9254-y

    Article  Google Scholar 

  23. Gard, M. and Hasterok, D., A global Curie depth model utilizing the equivalent source magnetic dipole method, Phys. Earth Planet. Inter., 2021, vol. 313, no. 1, Paper ID 106672. https://doi.org/10.1016/j.pepi.2021.106672

  24. Glebovsky, V.Yu., Astafurova, E.G., Chernykh, A.A., Korneva, M.A., Kaminsky, V.D., and Poselov, V.A., Thickness of the Earth’s crust in the deep Arctic Ocean: results of a 3D gravity modeling, Russ. Geol. Geophys., 2013, vol. 54, no. 3, pp. 247–262.

    Article  Google Scholar 

  25. Golubev, V.A., Kondyktivnyi i konvektivnyi vynos tepla v Baikal’skoy riftovoy zone (Conductive and Convective Heat Outflow in the Baikal Rift Zone), Lomonosov, I.S., Ed., Novosibirsk: Geo, 2007.

    Google Scholar 

  26. Gramberg, I.S., Piskarev, A.L., and Belyaev, I.V., The block’s tectonics of the East Siberian and Chukchi sea bottom according to gravity and magnetic anomaly analysis, Dokl. Akad. Nauk, 1997, vol. 352, no. 5, pp. 656–659.

    Google Scholar 

  27. Gramberg, I.S., Verba, V.V., Verba, M.L., and Kos’ko, M.K., Sedimentary cover thickness map—sedimentary basins in the Arctic, Polarforschung, 1999, vol. 69, pp. 243–249.

    Google Scholar 

  28. Hsieh, H.-H., Chen, C.-H., Lin, P.-Y., and Yen, H.-Y., Curie point depth from spectral analysis of magnetic data in Taiwan, Asian J. Earth Sci., 2014, vol. 90, pp. 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007

    Article  Google Scholar 

  29. Hussein, M., Mickus, K., and Serpa, L.F., Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California, Pure Appl. Geophys., 2013, vol. 170, pp. 617–632. https://doi.org/10.1007/s00024-012-0557-6

    Article  Google Scholar 

  30. Idárraga-García, J. and Vargas, C.A., Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior, Geod. Geodyn., 2018, vol. 9, no. 1, pp. 93–107. https://doi.org/10.1016/j.geog.2017.09.006

    Article  Google Scholar 

  31. IHFC. Global Heat Flow Database of the International Heat Flow Commission. 2012. https://ihfc-iugg.org/products/global-heat-flow-database/data. Cited September 16, 2021.

  32. Imaeva, L.P., Imaev, V.S., Kozmin, B.M., Mel’nikova, V.I., Seredkina, A.I., Mackey, K.D., Ashurkov, S.V., Smekalin, O.P., Ovsyuchenko, A.N., Chipizubov, A.V., and Syas’ko, A.A., Seismotektonila severo-vostochnogo sektora Rossiyskoy Arktiki (Seismotectonics of the Northeastern Sector of the Russian Arctic), Imaeva, L.P. and Kolodeznikov, I.I., Eds., Novosibirsk: Sib. Otd. RAN, 2017.

    Google Scholar 

  33. Imaeva, L.P., Imaev, V.S., and Seredkina, A.I., Seismotectonic deformation of active segments of the junction zone of the Kolyma-Omolon superterrain and South Anyui Suture (Southeastern Russia), Geotectonics, 2021, vol. 55, no. 1, pp. 20–35. https://doi.org/10.1134/S0016852121010064

    Article  Google Scholar 

  34. International Seismological Centre. On-line Bulletin. Internatl. Seis. Cent., Thatcham, United Kingdom. 2021. http://www.isc.ac.uk.

  35. Jakovlev, A.V., Bushenkova, N.A., Koulakov, I.Yu., and Dobretsov, N.L., Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography, Russ. Geol. Geophys., 2012, vol. 53, no. 10, pp. 963–971.

    Article  Google Scholar 

  36. Khain, V.E., Polyakova, I.D., and Filatova, N.I., Tectonics and petroleum potential of the eastern Arctic, Russ. Geol. Geophys., 2009, vol. 50, no. 4, pp. 334–345.

    Article  Google Scholar 

  37. Kumar, R., Bansal, A.R., Betts, P.G., and Ravat, D., Re-assessment of the depth to the base of magnetic sources (DBMS) in Australia from aeromagnetic data using the defractal method, Geophys. J. Int., 2021, vol. 225, no. 1, pp. 530–547. https://doi.org/10.1093/gji/ggaa601

    Article  Google Scholar 

  38. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere, Cambridge: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  39. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0–A 1-degree global model of Earth’s crust, Geophys. Res. Abstr., 2013, vol. 15, Abstract ID EGU 2013–2658.

  40. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, Lond. Geol. Soc. Spec. Publ. vol. 460, 2017, pp. 419–440.

    Google Scholar 

  41. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thébault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth, Planets Space, 2016, vol. 68, no. 1, Paper ID 27, pp. 1–13.

  42. Levshin, A.L., Ritzwoller, M.H., Barmin, M.P., Villaseñor, A., and Padgett, C.A., New constraints on the arctic crust and uppermost mantle: surface wave group velocities, Pn, and Sn, Phys. Earth Planet. Inter., 2001, vol. 123, no. 2-4, pp. 185–204.

    Article  Google Scholar 

  43. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, Paper ID 45129. https://doi.org/10.1038/srep45129

  44. Lobkovsky, L.I., Kononov, M.V., and Shipilov, E.V., Geodynamic causes of the emergence and termination of cenozoic shear deformations in the Khatanga-Lomonosov fault zone (Arctic), Dokl. Earth Sci., 2020, vol. 492, no. 1, pp. 356–360. https://doi.org/10.1134/S1028334X20050104

    Article  Google Scholar 

  45. Mackey, K.G., Fujita, K., and Ruff, L.J., Crustal thickness of Northeast Russia, Tectonophysics, 1998, vol. 284, nos. 3–4, pp. 283–297.

    Article  Google Scholar 

  46. Maule, C.F., Purucker, M.E., Olsen, N., and Mosegaard, K., Heat flux anomalies in Antarctica revealed by satellite magnetic data, Science, 2005, vol. 309, no. 5733, pp. 464–467. https://doi.org/10.1126/science.1106888

    Article  Google Scholar 

  47. Maus, S. and Dimri, V.P., Scaling properties of potential fields due to scaling sources, Geophys. Res. Lett., 1994, vol. 21, no. 10, pp. 891–894.

    Article  Google Scholar 

  48. Maus, S., Gordon, D., and Fairhead, D.J., Curie temperature depth estimation using a selfsimilar magnetization model, Geophys. J. Int., 1997, vol. 129, no. 1, pp. 163–168.

    Article  Google Scholar 

  49. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thébault, E., and Tontini, F.C., EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements, Geochem., Geophys., Geosyst., 2009, vol. 10, no. 8, Paper ID Q08005. https://doi.org/10.1029/2009GC002471

  50. Metelkin, D.V., Vernikovsky, V.A., Tolmacheva, T.Yu., Matushkin, N.Yu., and Zhdanova, A.I., First paleomagnetic data for the Early Paleozoic deposits of the New Siberian Islands (in the East Siberian Sea): concerning the formation of the South Anyui Suture and tectonic reconstruction of Arctida, Lithosfera, 2014, no. 3, pp. 11–31.

  51. Meyer, B., Chulliat, A., and Saltus, R., Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem., Geophys., Geosyst., 2017, vol. 18, no. 12, pp. 4522–4537. https://doi.org/10.1002/2017GC007280

    Article  Google Scholar 

  52. Nikishin, A.M., Startseva, K.F., Verzhbitsky, V.E., Cloe-tingh, S., Malyshev, N.A., Petrov, E.I., Posamentier, H., Freiman, S.I., Lineva, M.D., and Zhukov, N.N., Sedimentary basins of the East Siberian sea and the Chukchi sea region and the adjacent area of Amerasia basin: seismic stratigraphy and stages of geological history, Geotectonics, 2019, vol. 53, no. 6, pp. 635–657. https://doi.org/10.1134/S0016852119060104

    Article  Google Scholar 

  53. Núñez Demarco, P., Prezzi, C., and Sánchez Bettucci, L., Review of Curie point depth determination through different spectral methods applied to magnetic data, Geophys. J. Int., 2021, vol. 224, no. 1, pp. 17–39. https://doi.org/10.1093/gji/ggaa361

    Article  Google Scholar 

  54. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.

    Article  Google Scholar 

  55. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, no. 3, pp. 481–494.

    Article  Google Scholar 

  56. Oliveira, J.T.C., Barbosa, J.A., de Castro, D.L., de Barros Correia, P., Magalhães, J.R.C., Filho, O.J.C., and Buarque, B.V., Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation, Ann. Geophys., 2021, vol. 64, no. 2, Paper ID GT213. https://doi.org/10.4401/ag-8424

  57. Olsen, N., Ravat, D., Finlay, C.C., and Kother, L.K., LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations, Geophys. J. Int., 2017, vol. 211, no. 3, pp. 1461–1477. https://doi.org/10.1093/gji/ggx381

    Article  Google Scholar 

  58. O’Regan, M., Preto, P., Stranne, C., Jakobsson, M., and Koshurnikov, A., Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov Ridge, Arctic Ocean, Geochem., Geophys., Geosyst., 2016, vol. 17, no. 5, pp. 1608–1622. https://doi.org/10.1002/2016GC006284

    Article  Google Scholar 

  59. Parfenov, L.M. and Natal’in, B.A., Mesozoic tectonic evolution of northeastern Asia, Tectonophysics, 1986, vol. 127, no. 3-4, pp. 291–304.

    Article  Google Scholar 

  60. Petrov, O., Morozov, A., Shokalsky, S., Kashubin, S., Artemieva, I.M., Sobolev, N., Petrov, E., Ernst, R.E., Sergeev, S., and Smelror, M., Crustal structure and tectonic model of the Arctic Region, Earth-Sci.Rev., 2016, vol. 154, pp. 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013

    Article  Google Scholar 

  61. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program. 2015. https://wiki.oulu.fi/x/0oU7AQ/

  62. Piskarev, A.L., Poselov, V.A., Avetisov, G.P., Butsenko, V.V., Glebovskiy, V.Yu., Gusev, E.A., Zholodz, S.M., Kaminskiy, V.D., Kireev, A.A., Smirnov, O.E., Firsov, Yu.G., Zinchenko, A.G., Pavlenkin, A.D., Poselova, L.G., Savin, V.A., Chernykh, A.A., and El’kina, D.V., Arkticheskiy Bassein (geologiya i morfologiya) (Arctic Basin: Geology and Morphology), Kaminskiy, V.D., Ed., St. Petersburg: VNII Okeangeologiya, 2016.

    Google Scholar 

  63. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, no. 2, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  64. Ritzwoller, M.H. and Levshin, A.L., Eurasian surface wave tomography: group velocities, J. Geophys. Res.: Solid Earth, 1998, vol. 103, no. B3, pp. 4839–4878. https://doi.org/10.1029/97JB02622

    Article  Google Scholar 

  65. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  66. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Morgen, S., and Biegert, E., Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method, Tectonophysics, 2014, vol. 624–625, pp. 75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  67. Seredkina, A.I., S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data, Phys. Earth Planet. Inter., 2019a, vol. 290, pp. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  68. Seredkina, A.I., Surface wave tomography of the Arctic from Rayleigh and Love wave group velocity dispersion data, Izv., Phys. Solid Earth, 2019b, vol. 55, no. 3, pp. 439–450. https://doi.org/10.1134/S106935131903008X

    Article  Google Scholar 

  69. Seredkina, A.I., and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 735–745. https://doi.org/10.2113/RGG20194106

    Article  Google Scholar 

  70. Shikalov, E.V., Lobkovsky, L.I., Shkarubo, S.I., and Kiril-lova, T.A., Geodynamic settings in the junction zone of the Lomonosov ridge and the Eurasian basin with the Eurasian continental margin, Geotectonics, 2021, vol. 55, no. 5, pp. 655–675. https://doi.org/10.1134/S0016852121050071

    Article  Google Scholar 

  71. Shipilov, E.V., Tectono-geodynamic evolution of Arctic continental margins during epochs of young ocean formation, Geotectonics, 2004, vol. 38, no. 5, pp. 343–365.

    Google Scholar 

  72. Sibson, R.H., Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seismol. Am. Soc., 1982, vol. 72, no 1, pp. 151–163.

    Google Scholar 

  73. Sibson, R.H., Roughness at the base of the seismogenic zone: Contributing factors, J. Geophys. Res.: Solid Earth, 1984, vol. 89, no. B7, pp. 5791–5799.

    Article  Google Scholar 

  74. Sokolov, S.D., Tuchkova, M.I., Ganelin, A.V., Bondarenko, G.E., and Layer, P., Tectonics of the South Anyui Suture (Northeastern Asia), Geotectonics, 2015, vol. 49, no. 1, pp. 3–26.

    Article  Google Scholar 

  75. Spector, A. and Grant, F.S., Statistical models for interpreting aeromagnetic data, Geophysics, 1970, vol. 35, no. 2, pp. 293–302.

    Article  Google Scholar 

  76. Tanaka, A., Magnetic and seismic constraints on the crustal thermal structure beneath the Kamchatka Peninsula in Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M., Lees, J., Eds., Geophysical Monograph Series, vol. 172, Washington: AGU, 2007, pp. 100–105.

    Google Scholar 

  77. Tanaka, A., Global centroid distribution of magnetized layer from World Digital Magnetic Anomaly Map, Tectonics, 2017, vol. 36, no. 12, pp. 3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  78. Tanaka, A. and Ishikawa, Y., Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study, Phys. Earth Planet. Inter., 2005, vol. 152, no. 4, pp. 257–266. https://doi.org/10.1016/j.pepi.2005.04.011

    Article  Google Scholar 

  79. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, nos. 3–4, pp. 461–470.

    Article  Google Scholar 

  80. Trifonova, P., Zhelev, Zh., Petrova, T., and Bojadgieva, K., Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity, Tectonophysics, 2009, vol. 473, nos. 3–4, pp. 362–374. https://doi.org/10.1016/j.tecto.2009.03.014

    Article  Google Scholar 

  81. Verba, V.V., Kim, B.I., and Volk, V.E., Stroeniye zemnoy koru Arkticheskogo regiona po geofizicheskim dannym (Crustal Structure of the Arctic Region from Geophysical Data) in Geologo- geofizicheskiye kharakteristiki litosfery Arkticheskogo regiona (Geological and Geophysical Characteristics of the Arctic Region Lithosphere), vol. 2, Avetisov, G.P. and Pogrebitskii, Yu.E., Eds., St.-Petersburg: VNII Okeangeologiya, 1998, pp. 12–28.

    Google Scholar 

  82. Verhoef, J.R., Macnab, R., Roest, W., and Arkani-Hamed, J., Magnetic anomalies of the Arctic and North Atlantic Oceans and adjacent land areas. Geol. Surv. Can. Open File 3125a, 1996.

  83. Wasilewski, P.J. and Mayhew, M.A., The Moho as a magnetic boundary revisited, Geophys. Res. Lett., 1992, vol. 19, no. 22, pp. 2259–2262.

    Article  Google Scholar 

  84. Wasilewski, P.J., Thomas, H.H., and Mayhew, M.A., The Moho as a magnetic boundary, Geophys. Res. Lett., 1979, vol. 6, no. 7, pp. 541–544.

    Article  Google Scholar 

  85. Wen, L., Kang, G., Bai, C., and Gao, G., Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas, Earth Planets Space, 2019, vol. 71, no. 1, Paper ID 85. https://doi.org/10.1186/s40623-019-1063-1

  86. Yanovskii, B.M., Zemnoy magnetism (Terrestrial Magnetism), Metallova, V.V., Ed., Leningrad: Leningr. Gos. Univ., 1978.

    Google Scholar 

  87. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, book 2.

Download references

ACKNOWLEDGMENTS

We thank the reviewers for their comments, which improved the paper.

Funding

This work was funded by the Russian Science Foundation, grant no. 21-77-10070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Filippova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Filippov, S.V. Depths to Lithospheric Magnetic Sources and Lithospheric Thermal Regime under the East Siberian Sea. Izv., Phys. Solid Earth 58, 507–519 (2022). https://doi.org/10.1134/S1069351322040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322040036

Keywords:

Navigation