Skip to main content
Log in

The Depths to the Lithospheric Magnetic Sources Along the Kovdor–GSZ-76 Profile (Baltic Shield–Barents Sea)

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In the paper, we present the results of a study of the depths to lithospheric magnetic sources along the KovdorGSZ-76 composite profile starting on the Baltic Shield and ending in the northeast of the Barents Sea. The centroid depth and the depths to the top and bottom boundaries of the magnetically active layer are calculated from the azimuthally-averaged Fourier power spectra of the lithospheric geomagnetic field using the centroid method. The lithospheric geomagnetic field is set by the most up-to-date EMAG2v3 global model. As a result, the depth to the top boundary of the magnetically active layer was found to vary from 1.1 km under the Baltic Shield to 8.1 km under the North Barents Basin, which is consistent with the variations in the thickness of the sedimentary layer along the considered profile that are obtained from seismic data. The depth to the bottom boundary of lithospheric magnetic sources is at its minimum under the Timan-Varanger fold belt (35.5 km). Under the Baltic Shield and the hypothetical Svalbard massif (within the East Barents megathrough), it increases to 39.6–41.0 km. For the studied profile, the magnetically active layer of the lithosphere is completely located within the Earth’s crust under the Baltic Shield and the Timan-Varanger fold belt. The upper mantle is probably magnetic under the northeast end of the considered profile. The depth distribution of the bottom boundary of lithospheric magnetic sources obtained in the study agrees better with independent geophysical data (the values of the surface heat flow, temperature distributions in the mantle, and thermal thickness of the lithosphere) than that of similar global and regional models calculated with allowance for the fractal nature of the magnetization distribution in the magnetoactive layer of the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aboud, E., Alotaibi, A.M., and Saud, R., Relationship between curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia, Asian J. Earth Sci., 2016, vol. 128, pp. 42–53. https://doi.org/10.1016/j.jseaes.2016.07.025

    Article  Google Scholar 

  2. Amante, C. and Eakins, B.W., ETOPO1. 1 Arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009. https://doi.org/10.7289/V5C8276M

  3. Andrés, J., Marzán, I., Ayarza, P., Martí, D., Palomeras, I., Torné, M., Campbell, S., and Carbonell, R., Curie point depth of the Iberian Peninsula and surrounding margins. A thermal and tectonic perspective of its evolution, J. Geophys. Res.: Solid Earth, 2018, vol. 123, pp. 2049–2068. https://doi.org/10.1002/2017JB014994

    Article  Google Scholar 

  4. Artemieva, I.M., Lithosphere structure in Europe from thermal isostasy, Earth Sci. Rev., 2019, vol. 188, pp. 454–468. https://doi.org/10.1016/j.earscirev.2018.11.004

    Article  Google Scholar 

  5. Artemieva, I.M. and Thybo, H., EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region, Tectonophysics, 2013, vol. 609, pp. 97–153. 2013. https://doi.org/10.1016/j.tecto.2013.08.004.

  6. Bansal, A.R., Gabriel, G., Dimri, V.P., and Krawczyk, C.M., Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany, Geophysics, 2011, vol. 76, no. 3, pp. L11–L22. https://doi.org/10.1190/1.3560017

    Article  Google Scholar 

  7. Bansal, A.R., Anand, S.P., Rajaram, M., Rao, V.K., and Dimri, V.P., Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources, Tectonophysics, 2013, vol. 603, pp. 155–161. https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  8. Bhattacharyya, B.K. and Leu, L.-K., Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures, Geophysics, 1975a, vol. 40, no. 6, pp. 993–1013.

    Article  Google Scholar 

  9. Bhattacharyya, B.K. and Leu, L.-K., Analysis of magnetic anomalies over Yellowstone national park: Mapping of Curie point isothermal surface for geothermal reconnaissance, J. Geophys. Res., 1975b, vol. 80, no. 32, pp. 4461–4465.

    Article  Google Scholar 

  10. Bouligand, C., Glen, J.M.G., and Blakely, J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res., 2009, vol. 114, p. B11104. https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  11. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, pp. 56–72. https://doi.org/10.1093/gji/ggx144

    Article  Google Scholar 

  12. Drachev, S.S., Malyshev, N.A., and Nikishin, A.M., Tectonic history and petroleum geology of the Russian Arctic shelves: An overview, in Petroleum Geology: From Mature Basins to New Frontiers, Proc. 7th Petroleum Geology Conference, London: Geological Society, 2010, pp. 591–619. https://doi.org/10.1144/0070591.

  13. Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Conder, J.A., and Ionov, D.A., The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources, Geophys. Res. Lett., 2013, vol. 40, pp. 105–110. https://doi.org/10.1029/2012GL054100

    Article  Google Scholar 

  14. Ferré, E.C., Friedman, S.A., Martin-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., and Conder, J.A., Eight good reasons why the uppermost mantle could be magnetic, Tectonophysics, 2014, vol. 624–625, pp. 3–14. https://doi.org/10.1016/j.tecto.2014.01.004

    Article  Google Scholar 

  15. Filippova, A.I. and Filippov, S.V., Depths to lithospheric magnetic sources and lithospheric thermal regime under the East Siberian Sea, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 507–519. https://doi.org/10.1134/S1069351322040036

    Article  Google Scholar 

  16. Filippova, A.I. and Solovey, O.A., Surface wave tomography of the Kola Peninsula and adjacent territories: Data on dispersion of group velocities of Rayleigh and Love waves, Dokl. Earth Sci., 2022, vol. 504, no. 2, pp. 380–384. https://doi.org/10.1134/S1028334X2206006X

    Article  Google Scholar 

  17. Filippova, A.I., Golubev, V.A., and Filippov, S.V., Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  Google Scholar 

  18. Friedman, S.A., Feinberg, J.M., Ferré, E.C., Demory, F., Martín-Hernández, F., Conder, J.A., and Rochette, P., Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior, Tectonophysics, 2014, vol. 624–625, pp. 15–23. https://doi.org/10.1016/j.tecto.2014.04.023

    Article  Google Scholar 

  19. Gard, M. and Hasterok, D., A global curie depth model utilizing the equivalent source magnetic dipole method, Phys. Earth Planet. Inter., 2021, vol. 313, p. 106672. https://doi.org/10.1016/j.pepi.2021.106672

    Article  Google Scholar 

  20. Goev, A.G., Sanina, I.A., Oreshin, S.I., Reznichenko, R.A., Tarasov, S.A., and Fedorov, A.V., Receiver-function velocity structure of the lithosphere beneath the Khibiny and Lovozero massifs, Northeastern Baltic Shield, Izv., Phys. Solid Earth, 2021, vol. 57, no. 5, pp. 605–613. https://doi.org/10.1134/S1069351321050062

    Article  Google Scholar 

  21. Golubev, V.A., Konduktivnyi i konvektivnyi vynos tepla v Baikal’skoi riftovoi zone (Conductive and Convective Heat Transfer in the Baikal Rift Zone), Novosibirsk: Geo, 2007.

    Google Scholar 

  22. Hussein, M., Mickus, K., and Serpa, L.F., Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California, Pure Appl. Geophys., 2013, vol. 170, pp. 617–632. https://doi.org/10.1007/s00024-012-0557-6

    Article  Google Scholar 

  23. Idarraga-Garcia, J. and Vargas, C.A., Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior, Geod. Geodyn., 2018, vol. 9, pp. 93–107. https://doi.org/10.1016/j.geog.2017.09.006

    Article  Google Scholar 

  24. IHFC, Global Heat Flow Database of the International Heat Flow Commission, 2012. https://ihfc-iugg.org/products/global-heat-flow-database/data.

  25. Khutorskoi, M.D., Akhmedzyanov, V.R., Ermakov, A.V., Leonov, Yu.G., Podgornykh, L.V., Polyak, B.G., Sukhikh, E.A., and Tsybulya, L.A., Geothermy of the Arctic seas, in Trudy geologicheskogo instituta (Transactions of the Geological Institute), Moscow: GEOS, 2013, vol. 605.

  26. Klitzke, P., Faleide, J.I., Scheck-Wenderoth, M., and Sippel, J., A lithosphere-scale structural model of the Barents Sea and Kara Sea region, Solid Earth, 2015, vol. 6, no. 1, pp. 153–172. https://doi.org/10.5194/se-6-153-2015

    Article  Google Scholar 

  27. Klitzke, P., Franke, D., Ehrhardt, A., Lutz, R., Reinhardt, L., Heyde, I., and Faleide, J.I., The Paleozoic evolution of the Olga basin region, northern Barents Sea: A link to the Timanian orogeny, Geochem. Geophys. Geosyst., 2019, vol. 20, pp. 614–629. https://doi.org/10.1029/2018GC007814

    Article  Google Scholar 

  28. Kumar, R., Bansal, A.R., Betts, P.G., and Ravat, D., Re-assessment of the depth to the base of magnetic sources (DBMS) in Australia from aeromagnetic data using the defractal method, Geophys. J. Int., 2021, vol. 225, no. 1, pp. 530–547. https://doi.org/10.1093/gji/ggaa601

    Article  Google Scholar 

  29. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere, Cambridge, UK: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  30. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0: A 1-degree global model of Earth’s crust, in Abstracts European Geoscience Union General Assembly, Vienna: EGU, 2013, EGU2013-2658.

    Google Scholar 

  31. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: Inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, London, Geological Society, 2017, vol. 460, pp. 419–440.

    Google Scholar 

  32. Lesur, V., Hamoudi, M., Choi, Y., Dyment, J., and Thebault, E., Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth Planets Space, 2016, vol. 68, no. 1, pp. 1–13. https://doi.org/10.1186/s40623-016-0404-6

    Article  Google Scholar 

  33. Levshin, A.L., Schweitzer, J., Weidle, C., Shapiro, N.M., and Ritzwoller, M.H., Surface wave tomography of the Barents Sea and surrounding regions, Geophys. J. Int., 2007, vol. 170, pp. 441–459. https://doi.org/10.1111/j.1365-246X.2006.03285.x

    Article  Google Scholar 

  34. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, p. 45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  35. Lu, Y., Li, C.-F., Wang, J., and Wan, X., Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications, Tectonophysics, 2022, vol. 822, p. 229158. https://doi.org/10.1016/j.tecto.2021.229158

    Article  Google Scholar 

  36. Maus, S., Barckhausen, U., Berkenbosch, H., et al., EMAG2: A 2-arc-minute resolution earth magnetic anomaly grid compiled from satellite, airborne and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, p. Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  37. Meyer, B., Chulliat, A., and Saltus, R., Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 4522–4537. https://doi.org/10.1002/2017GC007280

    Article  Google Scholar 

  38. Núñez Demarco, P, Prezzi, C., and Sánchez Bettucci, L., Review of Curie point depth determination through different spectral methods applied to magnetic data, Geophys. J. Int., 2021, vol. 224, no. 1, pp. 17–39. https://doi.org/10.1093/gji/ggaa361

    Article  Google Scholar 

  39. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.

    Article  Google Scholar 

  40. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, pp. 481–494.

    Article  Google Scholar 

  41. Oliveira, J.T.C., Barbosa, J.A., de Castro, D.L., de Barros Correia, P., Magalhães, J.R.C., Filho, O.J.C., and Buarque, B.V., Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation, Ann. Geophys., 2021, vol. 64, no. 2, p. GT213. https://doi.org/10.4401/ag-8424

    Article  Google Scholar 

  42. Olsen, N., Ravat, D., Finlay, C.C., and Kother, L.K., LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and swarm satellite observations, Geophys. J. Int., 2017, vol. 211, pp. 1461–1477. https://doi.org/10.1093/gji/ggx381

    Article  Google Scholar 

  43. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program, 2015. https://wiki.oulu.fi/x/0oU7AQ/.

  44. Piskarev, A.L., Kireev, A.A., Savin, V.A., and Smirnov, O.E., Triassic and Jurassic–Cretaceous igneous formations in the sedimentary sequences of the North Barents Basin, Reg. Geol. Metallog., 2017, no. 69, pp. 15–22.

  45. Poselov, V.A., Pavlenkin, A.D., and Butsenko, V.V., The structure of the lithosphere according to DSS geotraverses in the Arctic, in Geologo–geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region), St. Petersburg: VNIIOkeangeologiya, 1996, vol. 1, ch. 2, pp. 145–155.

  46. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  47. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  48. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Morgen, S., and Biegert, E., Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method, Tectonophysics, 2014, vol. 624–625, pp. 75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  49. Seredkina, A.I. and Filippov, S.V., Parameters of the magnetoactive layer of the lithosphere for the Siberian Platform—Transbaikalia profile based on WDMAM 2.0 model data, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 6, pp. 761–769. https://doi.org/10.1134/S0016793219060094

  50. Seredkina, A.I. and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 735–745. https://doi.org/10.2113/RGG20194106

    Article  Google Scholar 

  51. Sharov, N.V. and Lebedev, A.A., Heterogeneous lithospheric structure of the Fennoscandian shield: Seismic data, Geodin. Tektonofiz., 2022, vol. 13, no. 1, p. 0569. https://doi.org/10.5800/GT-2022-13-1-0569

  52. Shulgin, A., Mjelde, R., Faleide, J.I., Høy, T., Fluesh, E., and Thybo, H., The crustal structure in the transition zone between the western and eastern Barents Sea, Geophys. J. Int., 2018, vol. 214, pp. 315–330. https://doi.org/10.1093/gji/ggy139

    Article  Google Scholar 

  53. Sobh, M., Gerhards, C., Fadel, I., and Götze, H.-J., Mapping the thermal structure of Southern Africa from curie depth estimates based on wavelet analysis of magnetic data with uncertainties, Geochem. Geophys. Geosyst., 2021, vol. 22, no. 1, p. 2021GC010041. https://doi.org/10.1029/2021GC010041

  54. Spector, A. and Grant, S., Statistical models for interpreting aeromagnetic data, Geophysics, 1970, vol. 35, pp. 293–302.

    Article  Google Scholar 

  55. Tanaka, A., Global centroid distribution of magnetized layer from world digital magnetic anomaly map, Tectonics, 2017, vol. 36, pp. 3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  56. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  Google Scholar 

  57. Trifonova, P., Zhelev, Zh., Petrova, T., and Bojadgieva, K., Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity, Tectonophysics, 2009, vol. 473, pp. 362–374. https://doi.org/10.1016/j.tecto.2009.03.014

    Article  Google Scholar 

  58. Wasilewski, P.J. and Mayhew, M.A., The Moho as a magnetic boundary revisited, Geophys. Res. Lett., 1992, vol. 19, no. 22, pp. 2259–2262.

    Article  Google Scholar 

  59. Wasilewski, P.J., Thomas, H.H., and Mayhew, M.A., The Moho as a magnetic boundary, Geophys. Res. Lett., 1979, vol. 6, pp. 541–544.

    Article  Google Scholar 

  60. Yanovskii, B.M., Zemnoi magnetism (Terrestrial Magnetism), Leningrad: Leningradskii universitet, 1978.

Download references

Funding

The work was supported by the state task of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Filippova or S. V. Filippov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Filippov, S.V. The Depths to the Lithospheric Magnetic Sources Along the Kovdor–GSZ-76 Profile (Baltic Shield–Barents Sea). Geomagn. Aeron. 62, 767–778 (2022). https://doi.org/10.1134/S0016793222060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222060044

Navigation