Skip to main content
Log in

Lunisolar Tides Influence on Electrical Conductivity of the Earth’s Crust in the Territory of Kola Peninsula

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The results of studying the influence of lunisolar tides on the electrical conductivity of the Earth’s crust in the territory of the Kola Peninsula are presented. Along with the results obtained by the authors, the data of other researchers are also considered. All the studies are based on the analysis of the field produced by the Zevs facility transmitting extremely low frequency (ELF) signals at 82–83 Hz. The measurements were carried out in different years at the Avva-Guba (1998), Lovozero (2009), and Imandra–Varzuga polygon (IVP) monitoring sites (2013) located 180, 90, and 160 km from the transmitter, respectively. The negative correlation between the tides and crustal electrical resistivity is revealed at all the points. This means that tidal rises of the Earth’s surface are accompanied by a decrease in resistivity and vice versa. The overview shows that the higher the resistivity of separate Earth’s crustal blocks the higher the relative amplitudes of the corresponding tidal responses that are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al’tgauzen, N.M. and Barsukov, O.M., On time variations in electrical conductivity, in Fizicheskie osnovaniya poiskov metodov prognoza zemletryasenii (Physical Basis for Searching for the Methods to Predict Earthquakes), Moscow: Nauka, 1970, pp. 101–110.

    Google Scholar 

  • Asming, V.E., A flowchart of signal processing in Volga-86 experiment, in Glubinnye geoelektricheskie issledovaniya s ispol’zovaniem promyshlennykh LEP (Deep Geoelectrical Studies Using Industrial Power Lines), Apatity: KNTs AN SSSR, 1990, pp. 89–90.

    Google Scholar 

  • Avagimov, A.A. Ataev, A.I., et al., Correlation between the anomalous changes in electrical resistivity of the rocks in the fault zone and tidal deformations of the Earth’s crust, Izv. Akad. Nauk Turkm. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, 1988, no. 5, pp. 50–52.

    Google Scholar 

  • Barsukov, O.M., Time variations in Pa as a probable earthquake prediction criterion, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1968, no. 7, pp. 86–88.

    Google Scholar 

  • Barsukov, O.M. and Sorokin, O.N., Variations in apparent resistivity of rocks in the Garm seismically active region, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1973, no. 10, pp. 100–102.

    Google Scholar 

  • Bernstein, S.L., Burrows, M., Evans, J.E., et al. Longrange communication at extremely low frequencies, Proc. IEEE, 1974, vol. 62, no. 3, pp. 292–312.

    Article  Google Scholar 

  • Egorov, N.I., Fizicheskaya okeanografiya (Physical Oceanography), Leningrad: Gidrometeoizdat, 1974.

    Google Scholar 

  • Egorov, Yu.M., Design of the device for recording the variations in the Earth’s magnetic field in a broad frequency band, Extended Abstract of Cand. Sci. (Techn.) Dissertation, Moscow, 1965.

    Google Scholar 

  • Fel’dman, I.S. and Zhamaletdinov, A.A., Fluid and thermal conductivity models of the lithosphere according to the laboratory data, in Kompleksnye geologo-geofizicheskie modeli drevnikh shchitov. Trudy Vserossiiskoi (s mezhdunarodnym uchastiem) konferentsii (Integrated Geological–Geophysical Models of Ancient Shields. Proc. All-Russian Conference with International Participation), Apatity: Geol. inst. KNTs RAN, 2009, pp. 100–107.

    Google Scholar 

  • Frazer-Smith, A.C. and Bannister, P.R., Reception of ELF signals at antipodal distances, Radio Sci., 1998, vol. 33, no. 1, pp.83–88.

    Article  Google Scholar 

  • Idarmachev, Sh.G. and Abdulaev, Sh.-S.O., The assessment of electric resistivity-related strain sensitivity of rocks in seismic regions, Dokl., Earth Sci., 1998, vol. 361, no. 6, pp. 869–871.

    Google Scholar 

  • Jacobsen, T., The Russian 82 Hz ELF transmitter (A Extreme Low Frequency transmission-system, using the real longwaves), ALFLAB, Halden in Norway, 2013. http://www.vlf.it/zevs/zevs.htm

    Google Scholar 

  • Kolobov, V.V., Kuklin, D.N., Shevtsov, A.N., and Zhamaletdinov, A.A., The KVVN-7 multifunction digital measuring station for electromagnetic monitoring of seismoactive zones, Seism. Instrum., 2012, vol. 48, no. 1, pp. 75–84.

    Article  Google Scholar 

  • Kolomiets, A.S., Results of tiltmeter observations in Monchegorsk, in Seismicheskie i geodinamicheskie issledovaniya na severo-vostoke Baltiiskogo shchita (Seismic and Geodynamical Studies in the Northeast of Baltic Shield), Apatity: Kol’skii filial Akad. Nauk SSSR, 1979, pp. 82–91.

    Google Scholar 

  • Korotkova, T.G., Technique and results of studying the influence of lunar and solar tides on MT soundings by the example of processing the BEAR data, in Teoriya i metodika glubinnykh elektromagnitnykh zondirovanii na kristallicheskikh shchitakh (Theory and Methods of Deep Electromagnetic Sounding on Crystalline Shields), Apatity: KNTs RAN, 2006, pp. 202–206.

    Google Scholar 

  • Krasnobaeva, A.G., D’yakonov, B.P., Astaf’ev, P.F., et al., The structure of the northeast of the Baltic Shield according to magnetotelluric data, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 6, pp. 65–73.

    Google Scholar 

  • Lee, C.D., Vine, F.J., and Ross, R.G., Electrical conductivity models for the continental crust based on laboratory measurements on high-grade metamorphic rocks. Geophys. J. R. Astron. Soc., 1983, vol. 72, pp. 353–371.

    Article  Google Scholar 

  • Leontovich, M.A., Approximate boundary conditions for electromagnetic field on the surface of highly conductive bodies, in Issledovaniya po rasprostraneniyu radiovoln, chast’ II (Studies on Radio Wave Propagation, part II), Leningrad: Fizmatgiz, 1948, pp. 5–12.

    Google Scholar 

  • Mathews, P.M., Dehaut, V., and Gibson, J.M., Tidal station displacements, J. Geophys. Res., 1997, vol. 102, no. B9, pp. 20469–20477.

    Article  Google Scholar 

  • Milsom, J., Field Geophysics, 2nd ed., New York: Wiley, 1996.

    Google Scholar 

  • Mogi, K., Earthquake Prediction, Tokyo: Academic, 1985.

    Google Scholar 

  • Nikolaevskii, V.N., Cataclastic fracture of crustal rocks and anomalous geophysical fields, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 304–312.

    Google Scholar 

  • Nur, A., Dilatancy, pore fluids and premonitory variations of t s/t p travel times, Bull. Seismol. Soc. Am., 1972, vol. 62, no. 5, pp. 1217–1222.

    Google Scholar 

  • Rikitake, T., Earthquake Prediction, Amsterdam: Elsevier, 1976.

    Google Scholar 

  • Rokityanskii, I.I., Zybin, K.Yu., Rokityanskaya, D.A., and Shchepetnev, R.V., Magnetotelluric Studies of the Rock Massif at Borok, Lovozero and Petropavlovsk-Kamchatsky Geophysical Stations, in Elektromagnitnye zondirovaniya i magnitotelluricheskie metody razvedki (Electromagnetic Soundings and Magnetotelluric Methods of Survey), Bryunelli, B.E., Ed., Leningrad: LGU, 1963, pp. 124–130.

    Google Scholar 

  • Saraev, A.K., Pertel’, M.I., and Malkin, Z.M., Manifestation of tidal deformation of the Earth’s crust in the impedance variations of the electromagnetic field from ELF radio facility, in Uch. zapiski SPbGU. Voprosy geofiziki, 1998, vol. 433, no. 35, St. Petersburg, 1998, pp. 136–147.

    Google Scholar 

  • Shevtsov, A.N., Frequency sounding method in studying the electrical conductivity of the upper part of the Earth’s crust of the Baltic shield, Extended Abstract Cand. Sci. (Phys.–Math.) Dissertation, St.-Petersburg: Saint Petersburg State University, 2001.

    Google Scholar 

  • Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

    Google Scholar 

  • Tereshchenko, E.D., Sidorenko, A.E., and Grigor’ev, V.F., Tidal effects in the controlled-source ULF electromagnetic field on the Baltic crystalline shield, Izv., Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 112–117.

    Article  Google Scholar 

  • Tokarev, A.D., Zhamaletdinov, A.A., and Vasil’ev, A.N., Measurement complex SChZ-95 for controlled-source deep electromagnetic sounding of the Earth’s crust, in Pribory i metodika geofizicheskogo eksperimenta (Instruments and Technique of Geophysical Experiment), Murmansk: Kol’skii nauchnyi tsentr RAN, 1997, pp. 85–90.

    Google Scholar 

  • Vanyan, L.L., Osnovy elektromagnitnykh zondirovanii (Principles of Electromagnetic Sounding), Moscow: Nedra, 1965.

    Google Scholar 

  • Velikhov, Ye.P., Zhamaletdinov, A.A., Sobchakov, L.A., Veshev, A.V., Saraev, A.K., Tokarev, A.D., Shevtsov, A.N., Vasiljev, A.V., Sonnikov, A.G., and Yakovlev, A.V., Experiment on the frequency electromagnetic sounding of the Earth crust with the use of the powerful ELF antenna, Dokl., Earth Sci., 1994, vol. 338, no. 1, pp. 106–109.

    Google Scholar 

  • Vladimirov, N.P., Some results of deep electromagnetic soundings in the western part of the USSR, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1971, no. 11, pp. 116–119.

    Google Scholar 

  • Zhamaletdinov, A.A., Model’ elektroprovodnosti litosfery po rezul’tatam issledovanii s kontroliruemymi istochnikami polya (Baltiiskii shchit, Russkaya platforma) (Electric Conductivity Model of the Lithosphere Based on the Results of Studies with Controlled Field Sources (Baltic Shield, Russian Platform)), Leningrad: Nauka, 1990.

    Google Scholar 

  • Zhamaletdinov, A.A., On the dilatancy–diffusion nature of intermediate conductive layers in the Earth’s crust based on the from the Kola superdeep borehole logging data and the results of electromagnetic soundings, in Kompleksnye geologo-geofizicheskie modeli drevnikh shchitov. Trudy Vserossiiskoi (s mezhdunarodnym uchastiem) konferentsii (Integrated Geological and Geophysical Models of Ancient Shields. Proc. All-Russian Conference with International Participation), Apatity: Geol. inst. KNTs RAN, 2009, pp. 26–32.

    Google Scholar 

  • Zhamaletdinov, A.A. and Hjelt, S.E., On Electrical Conductivity Models of Baltic Shield, in Glubinnaya elektroprovodnost’ Baltiiskogo shchita (Deep Electrical Conductivity of the Baltic Shield), Petrozavodsk: KarFAN SSSR, 1986, pp. 56–69.

    Google Scholar 

  • Zhamaletdinov, A.A., Shevtsov, A.N., Tokarev, A.D., Korja, T., and Pedersen, L., Experiment on the deep frequency sounding and DC measurements in the central Finland granitoid complex, Electromagnetic Induction in the Earth, 14th Workshop (Sinaia, Romania, 1998), p. 83.

    Google Scholar 

  • Zhamaletdinov, A.A., Shevtsov, A.N., Tokarev, A.D., Kononov, Yu.M., and Van’yan, L.L., Influence of the Ionosphere and Bias Currents upon the Results of Deep Electromagnetic Soundings in the ELF Antenna Field, Dokl. Earth. Sci., 1999, vol. 367, no. 5, pp. 678–681.

    Google Scholar 

  • Zhamaletdinov, A.A., Mitrofanov, F.P., Tokarev, A.D., and Shevtsov, A.N., The influence of lunar and solar tidal deformations on electrical conductivity and fluid regime of the Earth’s crust, Dokl. Earth Sci., 2000, vol. 371, no. 2, pp. 403–407.

    Google Scholar 

  • Zhamaletdinov, A.A., Shevtsov, A.N., Tokarev, A.D., and Korja, T., Electromagnetic frequency sounding of the crust beneath the central Finland granitoid complex, Izv., Phys. Solid Earth, 2002, vol. 38, no. 11, pp. 954–967.

    Google Scholar 

  • Zhamaletdinov, A.A., Tereshchenko, E.D., Grigor’ev, V.F., Kolobov, V.V., and Shevtsov, A.N., The experience of deep crustal sounding in the fields of high-power controlled sources and natural AMT-band variations on the Lovozero–Pulozero and Upoloksha–Porosozero profiles, in Innovatsionnye elektromagnitnye metody geofiziki (Innovative Electromagnetic Methods of Geophysics), Velikhov, E.P., Ed., Moscow: Nauchnyi mir, 2012, pp. 109–136.

    Google Scholar 

  • Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Kolobov, V.V., Kolesnikov, V.E., Skorokhodov, A.A., Korotkova, T.G., Ivonin, V.V., Ryazantsev, P.A., and Birulya, M.A., The Kovdor-2015 experiment: study of the parameters of a conductive layer of dilatancy–diffusion nature (DD layer) in the Archaean crystalline basement of the Baltic shield, Dokl., Earth Sci., 2017, vol. 474, no. 2, pp. 641–645.

    Article  Google Scholar 

  • Zhdanov, M.S., Elektrorazvedka (Electrical Prospecting), Moscow: Nedra, 1986.

    Google Scholar 

  • 23.rd Electromagnetic Induction Workshop Abstract Book. 2016. http://geophysics.sc.mahidol.ac.th/emiw2016/wpcontent/uploads/EMIW2016_AbstractBook.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhamaletdinov.

Additional information

Original Russian Text © A.A. Zhamaletdinov, A.N. Shevtsov, T.G. Korotkova, 2018, published in Fizika Zemli, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhamaletdinov, A.A., Shevtsov, A.N. & Korotkova, T.G. Lunisolar Tides Influence on Electrical Conductivity of the Earth’s Crust in the Territory of Kola Peninsula. Izv., Phys. Solid Earth 54, 474–486 (2018). https://doi.org/10.1134/S1069351318030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318030102

Navigation