Skip to main content
Log in

Tidal Response of the Geophysical Medium as an Indicator of the Level of Seismic Stress in the Earth’s Crust

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

According to records of a 75-m laser interferometer over a 15-year observation period, the deformation component of the lunar–solar tide is distinguished as a result of the reaction of the Earth’s crust to this tide. The tidal response depends on the mechanical properties of the geophysical medium, or, in other words, it is determined by the elastic coefficients at the observation point. If the medium experiences variable tectonic or other mechanical loads, then at extreme values, within the framework of the considered concept, the elastic parameters of the medium should depend on the magnitude of this load or degree of the stress state and thus change the crustal response to the tide. The article demonstrates that, for a quantitative analysis of the stress level, it is necessary to select only the main lunar wave M2 from the total tide. The main advantage of this wave, as the article shows, is that it is less affected by variations in meteorological factors. Moreover, a complex parameter is required, namely, the amplitude factor and phase value of the observed tidal wave M2 with respect to the theoretical value of these parameters of this wave. Only the complete set of these parameters makes it possible to correctly assess the level of stress in the geophysical medium and, as a consequence, the ability to predict the formation of an active seismic source in a local zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beaumont, C. and Berger, J., Earthquake prediction: modification of the earth tide tilts and strains by dilatancy, Geophys. J. R. Astr. Soc., 1974, vol. 39, no. 1, pp. 111–121.  https://doi.org/10.1111/j.1365-246X.1974.tb05441.x

    Article  Google Scholar 

  2. Bessekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems), Moscow: Nauka, 1979.

  3. Demina, L.I., Kopp, M.L., Koronovskii, N.V., Leonov, M.G., Leonov, Yu.G., Lomize, M.G., Panov, D.I., Somin, M.L., and Tuchkova, M.I., Bol’shoi Kavkaz v al’piiskuyu epokhu (Greater Caucasus in Alpian Epoch), Moscow: GEOS, 2007.

  4. Dobrovol’skii, I.P., Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya (Mathematical Theory of Preparation and Prediction of Tectonic Earthquake), Moscow: Fizmatlit, 2009.

  5. Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Int., 1981, vol. 25, no. 4, pp. 297–356.  https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  6. Gabsatarova, I.P., Koroletskaya, L.N., and Malyanova, L.S., On the mechanisms of earthquake with different sources depths in the Terek–Sunzha region, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh (Modern Methods for Processing and Interpreting Seismological Data), Obninsk, Moscow oblast: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2016, pp. 103–107.

  7. Kopp, M.L., Late Alpine collisional structure of the Caucasus region, Bol’shoi Kavkaz v al’piiskuyu epokhu (Bol’shoi Kavkaz v al’piiskuyu epokhu), Moscow: GEOS, 2007, pp. 285–316.

    Google Scholar 

  8. Lukk, A.A. and Shevchenko, V.I., Seismicity, tectonics, and GPS geodynamics of the Caucasus, Izv., Phys. Solid Earth, 2019, vol. 55, pp. 626–648.https://doi.org/10.1134/S1069351319040062

    Article  Google Scholar 

  9. Melchior, P., Zemnye prilivy (The Tides of the Planet Earth), Moscow: Mir, 1968.

  10. Milyukov, V.K. and Myasnikov, A.V., Long-term observations of lithosphere deformations by the Baksan laser interferometer in underground conditions, Meas. Tech., 2012a, vol. 55, pp. 63–67.  https://doi.org/10.1007/s11018-012-9917-y

    Article  Google Scholar 

  11. Milyukov, V.K. and Myasnikov, A.V., Influence of thermoelastic and baric processes on measurements of lithosphere deformations by means of a Baksan laser interferometer, Meas. Tech., 2012b, vol. 55, pp. 659–665.  https://doi.org/10.1007/s11018-012-0017-9

    Article  Google Scholar 

  12. Milyukov, V.K., Amoruso, A., Crescentini, L., Mironov, A.P., Myasnikov, A.V., and Lagutkina, A.V., Oceanic loading and local distortions at the Baksan, Russia, and Gran Sasso, Italy, strain stations, Izv., Phys. Solid Earth, 2018, vol. 54, pp. 336–348.  https://doi.org/10.1134/S1069351318020131

    Article  Google Scholar 

  13. Milyukov, V.K., Amoruso, A., Crescentini, L., Mironov, A.P., Myasnikov, A.V., and Lagutkina, A.V., Estimation of free core resonance parameters based on long-term strain observations in the diurnal frequency band, Izv., Phys. Solid Earth, 2019, vol. 55, pp. 389–396.  https://doi.org/10.1134/S1069351319030066

    Article  Google Scholar 

  14. Milyukov, V.K., Klyachko, B.S., Myasnikov, A.V., Striganov, P.S., Yanin, A.F., and Vlasov, A.N., A laser interferometer-deformograph for monitoring the crust movement, Instrum. Exp. Tech., 2005, vol. 48, pp. 780–795.  https://doi.org/10.1007/s10786-005-0140-9

    Article  Google Scholar 

  15. Milyukov, V.K., Kopaev, A.V., Lagutkina, A.V., Mironov, A.P., and Myasnikov, A.V., Observations of crustal tide strains in the Elbrus area, Izv., Phys. Solid Earth, 2007, vol. 43, pp. 922–930.  https://doi.org/10.1134/S106935130711002X

    Article  Google Scholar 

  16. Molodenskii, S.M., Influence of the relief of a flat region on the tidal slopes and deformations: Second-order effects, Izv. Akad. Nauk SSSR, Ser. Fiz., 1986, no. 8, pp. 3–14.

  17. Molodenskii, M.S. and Molodenskii, S.M., Comparing the time variations in tidal responses of a medium in seismically active and quiet regions, Izv., Phys. Solid Earth, 2015, vol. 51, pp. 60–69.  https://doi.org/10.1134/S1069351314050061

    Article  Google Scholar 

  18. Myasnikov, A.V., On the problem of taking into account the effect of meteorological factors on large precision systems: A case study of the Baksan large-base laser interferometer, Seism. Instrum., 2020, vol. 56, pp. 17–25.  https://doi.org/10.3103/S0747923920010107

    Article  Google Scholar 

  19. Rogozhin, E.A., Present-day geodynamics and potential sources of earthquakes in Caucasus region, Sovremennye matematicheskie i geologicheskie modeli prirodnoi sredy (Modern Mathematical and Geological Models of Natural Medium), Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2002, pp. 244–254.

    Google Scholar 

  20. Rogozhin, E.A., Sobisevich, L.E., Nechaev, Yu.V., Sobisevich, A.L., Bogatikov, O.A., Gurbanov, A.G., Kovalenko, V.I., Gazeev, V.M., Polyak, B.G., Pokrovskii, B.G., Lavrushin, V.Yu., Kulikov, V.I., Melekestsev, I.V., Kashchuk, D.G., Milyukov, V.K., and Kopaev, A.V., Geodinamika, seismotektonika i vulkanizm Severnogo Kavkaza (Geodynamics, Seismotectonics, and Volcanism of the Northern Caucasus), Laverov, N.P, Eds., Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2001.

  21. Rogozhin, E.A., Gurbanov, A.G., Marakhanov, A.V., Ovsyuchenko, A.N., Spiridonov, A.V., and Burkanov, E.E., On the relationship between volcanic features and earthquakes in the Northern Caucasus in the Holocene, Izv., Phys. Solid Earth, 2005, vol. 41, no. 3, pp. 206–217.

    Google Scholar 

  22. Schueller, K., Theoretical basis for earth tide analysis with the new eterna34-ana-v4.0 program, Bull. Inf. Marees Terrestres, 2015, vol. 149, pp. 12024–12061.

    Google Scholar 

  23. Seleznev, V.S., Emanov, A.F., Kashun, V.N., Glinskii, B.M., Kovalevskii, V.V., Manshtein, A.K., Mikhailenko, B.G., Serdyukov, S.V., Sobisevich, A.L., Sobisevich, L.E., Solov’ev, V.M., Khairetdinov, M.S., Chichinin, I.S., Yushin, V.I., and Geza, N.I., Aktivnaya seismologiya s moshchnymi vibratsionnymi istochnikami (Active Seismology with Powerful Vibration Sources), Novosibirsk: Inst. Vychislit. Mat. i Mat. Geofiz. Sib. Otd. Ross. Akad. Nauk, 2004.

  24. Shevchenko, V.I., Lukk, A.A., and Guseva, T.V., Avtonomnaya i pleittektonicheskaya geodinamika nekotorykh poyasov i sooruzhenii (Autonomous and Plate Tectonic Geodynamics of Some Belts and Structures), Moscow: GEOS, 2017.

  25. Spiridonov, E.A. and Vinogradova, O.Yu., Atmospheric loading tilts, Seism. Instrum., 2020, vol. 56, pp. 394–398.  https://doi.org/10.3103/S074792392004009X

    Article  Google Scholar 

  26. Tamura, Y., A harmonic development of the tide-generating potential, Bull. Inf. Marees Terrestres, 1987, vol. 99, pp. 6813–6855.

    Google Scholar 

  27. Wenzel, H.G., The nanogal software: Earth tide data preprocessing package Eterna 3.30, Bull. Inf. Marees Terrestres, 1996, vol. 124, pp. 9425–9439.

    Google Scholar 

  28. Zharkov, V.N., Vnutrennie stroenie Zemli i planet (Internal Structure of Earth and Planets), Moscow: Nauka, 1983.

  29. Zharkov, V.N. and Pan’kov, V.L., Uravneniya sostoyaniya tverdykh tel pri vysokikh davleniyakh i temperaturakh (Equations of State of Solid Bodies under Large Pressures and Temperatures), Moscow: Nauka, 1968.

Download references

ACKNOWLEDGMENTS

The author thanks engineers N.A. Perelygin and S.V. Girin for technical support of the Baksan laser interferometer.

Funding

The study was financed by the Russian Science Foundation (project no. 19-05-00341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Myasnikov.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasnikov, A.V. Tidal Response of the Geophysical Medium as an Indicator of the Level of Seismic Stress in the Earth’s Crust. Seism. Instr. 58, 160–169 (2022). https://doi.org/10.3103/S0747923922020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922020086

Keywords:

Navigation