Skip to main content
Log in

Verifying the mesozoic dipole low hypothesis by the Siberian trap data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A complex study is carried out for the collection of trap rocks sampled from two sequences in the geographically distant regions of the Siberian trap province: the Ergalakh section (Norilsk region) and Tyvankitskii and Delkanskii formations (Maymecha-Kotuy region). The magnetic and thermomagnetic properties are studied, petrographic and microscopic investigations are carried out, the paleointensities are determined, and the domain structure of ferromagnetics is assessed using the Day diagram and the thermomagnetic criterion. It is shown that small single-domain and/or pseudo-single-domain grains are the carriers of remanent magnetization. The absolute paleointensities H anc are determined by the Thellier-Coe method with test heating of the samples to lower temperatures (check-point procedure). The paleointensity estimates that meet the modern reliability criteria are obtained in more than 130 samples. The mean H anc values in the lava flows from the Ergalakh section and the TyvankittskiiFormation, as well as in samples from the Delkanskii Formation, vary within 2.1–24.6 mkT, which is considerably lower than the present magnetic field at the sampling site (∼ 50 mkT). The corresponding mean VDM values in these sites vary within (0.54–3.2) × 1022 Am2 (with a dispersion of ∼0.9 × 1022 Am2), which is far lower than the mean VDM value (∼8 × 1022 Am2) in the Late Cenozoic. The agreement of low H anc and VDM determined in the Ergalakh section, Tyvankitskii, and Delkanskii formations with the previous similar data on the traps (Solodovnikov, 1994; Heunemann et al., 2004; Shcherbakova et al., 2005; 2013) supports the Mesozoic Dipole Low (MDL) hypothesis. In the Ergalakh section, low and extremely low H anc (11.2 and 2.7 mkT) are determined in two pulses (five flows) of the Ivakinskii Formation, which precedes the geomagnetic reversal. This probably indicates that these flows recorded a sharp decrease in H anc prior to the geomagnetic reversal (or at its beginning), which occurred at the earliest stage of the Norilsk tuff-lava sequence formation. The abnormal values of paleodirections and paleointensities in the group of the flows of the Tyvankitskii Formation suggest that they could have been formed during the anomalous nonstationary state of the geomagnetic field such as the excursion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanco, D., Kravchinsky, V.A., Valet, J.P., Ali, A., and Potter, D.K., Does the Permo-Triassic geomagnetic dipole low exist? Phys. Earth Planet. Inter., 2012, vol. 204, pp. 11–21.

    Article  Google Scholar 

  • Chadima, M. and Hrouda, F., Remasoft 3.0: a user-friendly paleomagnetic data browser and analyzer, Travaux Géophysiques, 2006, vol. 27, pp. 20–21.

    Google Scholar 

  • Chenet, A.-L., Fluteau, F., Courtillot, V., Gérard, M., and Subbarao, K.V., Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment, J. Geophys. Res., 2008, vol. 113, no. B4, B04101. doi 10.1029/2006jb004635

    Google Scholar 

  • Chenet, A.-L., Courtillot, V., Fluteau, F., Gérard, M., et al., Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section, J. Geophys. Res., 2009, vol. 114, no. B6, B06103. doi 10.1029/2008jb005644

    Google Scholar 

  • Coe, R.S., The determination of paleointensities of the Earth’s magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier’s method, J. Geomagn. Geoelectr., 1967, vol. 19, no. 3, pp. 157–178.

    Article  Google Scholar 

  • Coe, R.S., Grommé, S., Mankinen, E.A., Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 1978, vol. 83, no. B4, pp. 1740–1756. doi 10.1029/JB083iB04p01740.

    Article  Google Scholar 

  • Coe, R.S., Hongre, L., and Glatzmaier, G.A., An examination of simulated geomagnetic reversals from a palaeomagnetic perspective, Philos. Trans. R. Soc. London, Ser. A, 2000, vol. 358, no. 1768, pp. 1141—1170.

  • Courtillot, V. and Olson, P., Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events, Earth Planet. Sci. Lett., 2007, vol. 260, nos. 3–4, pp. 495–504.

    Article  Google Scholar 

  • Day, R., Fuller, M., and Schmidt, V.A., Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 260–267. doi 10.1016/0031-9201(77)90108-x

    Article  Google Scholar 

  • Egorov, V.N., Subdivision and correlation of the Triassic volcanic formations of the Maymecha-Kotuy province, in Nedra Taimyra. Sb. nauchn. trudov. Vyp. 1 (Collection of Research Papers “Taimyr’s Interior.” Vol. 1), Samoilov, A.G. and Malich, N.S, Eds., St. Petersburg: VSEGEI, 1995, pp. 141–154.

    Google Scholar 

  • Enkin, R.J., A Computer Program Package for Analysis and Presentation of Paleomagnetic Data, Pacific Geosci. Center, Geol. Survey of Canada, 1994.

    Google Scholar 

  • Fabian, K., Shcherbakov, V.P., and McEnroe, S.A., Measuring the Curie temperature, Geochem. Geophys. Geosyst., 2013, vol. 14, no. 4, pp. 947–961. doi 10.1029/2012gc004440

    Article  Google Scholar 

  • Fedorenko, V.A. and Czamanske, G.K., Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymech-Kotuy area, Siberian flood basalt province, Russia, Int. Geol. Rev., 1997, vol. 39, no. 4, pp. C. 479–531.

    Article  Google Scholar 

  • Gapeev, A.K. and Tselmovich, V.A., Microtexture of synthetic titanomagnetite oxidized at high partial pressures of oxygen, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1983, no. 12, pp. 91–95.

    Google Scholar 

  • Gapeev, A.K. and Tselmovich, V.A., Microstructure of natural heterophasically oxidized titanomagnetites, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 4, pp. 100–104.

    Google Scholar 

  • Goguitchaichvili, A., Alva Valdivia, L.M., Urritia Fucugauchi, J., et al., On the reaability of Mesozoic Dipole Low: new absolute paleointensity results from Paraná Flood Basalts (Brasil), Geophys. Res. Lett., 2002, vol. 29, no. 13. doi 10.1029/2002g1015242

    Google Scholar 

  • Heunemann, C., Krása, D., Soffel, H.C., Gurevitch, E., and Bachtadse, V., Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia, Earth Planet. Sci. Lett., 2004, vol. 218, nos. 1–2, pp. 197–213. doi 10.1016/s0012-821x(03)00642-3

    Article  Google Scholar 

  • Kamo, S.L., Czamanske, G.K., Amelin, Y., et al., Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma, Earth Planet. Sci. Lett., 2003, vol. 214, nos. 1–2, pp. 75–91. doi 10.1016/s0012-821x(03)00347-9

    Article  Google Scholar 

  • Khramov, A.N., Goncharov, G.I., Komissarova, R.A., et al., Paleomagnitologiya (Paleomegnetology), Khramov, A.N., Ed., Leningrad: Nedra, 1982.

  • Kirschvink, J.L., The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astr. Soc., 1980, vol. 62, pp. 699–718. doi 10.1111/j.1365-246X.1980.tb02601.x

    Article  Google Scholar 

  • Kosterov, A.A., Perrin, M., Glen, J.M., and Coe, R.S., Paleointensity of the Earth’s magnetic field in Early Cretaceous time: the Paraná Basalt, Brazil, J. Geophys. Res., 1998, vol. 103, no. B5, pp. 9739–9753. doi 10.1029/98jb00022

    Article  Google Scholar 

  • Latyshev, A.V., Veselovsky, R.V., Fetisova, A.M., and Pavlov, V.E., Results of paleomagnetic studies of traps of the Norilsk area and the Angara-Taseevo Depression, in Materialy Vseross. molodezhnoi nauchn.-prakt. konf. “Nauki o Zemle. Sovremennoe sostoyanie” (Proc. All-Russ. Sci.-Pract. Conf. of Young Scientists “Current State of the Earth’s Sciences”), Geol. Poligon “Shira”, Khakasiya, 2013, pp. 24–26.

    Google Scholar 

  • Ob”yasnitel’naya zapiska k Gosudarstvennoi geologicheskoi karte RF masshtaba 1: 200000. Seriya Maymecha-Kotuyskaya. List R-47-XI, XII (The 1: 200000 State Geological Map of the Russian Federation. Maymecha-Kotuy Series. Sheets R-47-XI, XII. Explanatory Note), St. Petersburg: VSEGEI, 1996.

  • Ob”yasnitel’naya zapiska k Gosudarstvennoi geologicheskoi karte RF masshtaba 1: 1000000 (novaya seriya). List R-(45)-47-Noril’sk (The 1: 100000 State Geological Map of the Russian Federation (New Series). Sheet R-45-(47)-Norilsk. Explanatory Note), St. Petersburg: VSEGEI, 2000.

  • Pavlov, V.E., Courtillot, V., Bazhenov, M.L., and Veselovsky, R.V., Paleomagnetism of the siberian traps: new data and a new overall 250 Ma pole for Siberia, Tectonophysics, 2007, vol. 443, nos.1–2, pp. 72–92. doi 10.1016/j.tecto.2007.07.005

    Article  Google Scholar 

  • Pavlov, V.E., Fluteau, F., Veselovsky, R.V., Fetisova, A.M., and Latyshev, A.V., Secular geomagnetic variations and volcanic pulses in the Permian-Triassic traps of the Norilsk and Maymecha-Kotuy Provinces, Izv. Phys. Solid Earth, 2011, vol. 47, no. 5, pp. 402–417.

    Article  Google Scholar 

  • Pavlov, V.E., Fluteau, F., Veselovsky, R.V., Latyshev, A.V., Fetisova, A.M., Elkins-Tanton, L., Sobolev, A.V., and Krivolitskaya, N.A., Volcanic pulses in the Siberian Traps as inferred from Permo-Triassic geomagnetic secular variations, Chapter 5 in Volcanism and Global Environmental Change, Schmidt, A., Fristad, K, and Elkins-Tanton, L.T., Eds., Cambridge: Cambridge Univ. Press, 2015, pp. 63–78.

    Chapter  Google Scholar 

  • Perrin, M. and Shcherbakov, V.P., Paleointensity of the Earth’s magnetic field for the past 400 Ma: evidence for a dipole structure during the Mesozoic Low, J. Geomagn. Geoelectr., 1997, vol. 49, no. 4, pp. 601–614.

    Article  Google Scholar 

  • Pick, T. and Tauxe, L., Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass, Nature, 1993, vol. 366, no. 6452, pp. 238–242.

    Article  Google Scholar 

  • Prevot, M. and Derder, M.E.,-M., McWilliams, M., and Thompson, J., Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 1990, vol. 97, nos. 1–2, pp. 129–139. doi 10.1016/0012-821x(90)90104-6

    Article  Google Scholar 

  • Selkin, P.A. and Tauxe, L., Long-term variations in palaeointensity, Philos. Trans. R. Soc. London, A, 2000, vol. 358, no. 1768, pp. 1065–1088. doi 10.1098/rsta.2000.0574.

    Article  Google Scholar 

  • Sepkoski, J.J.J., A compendium of fossil marine families, Milwaukee Publ. Museum Contrib. Biol. Geol., 1982, no. 51, pp. 1–125.

    Google Scholar 

  • Shcherbakov, V.P. and Shcherbakova, V.V., On the suitability of the Thellier method of palaeointensity determinations on pseudo-single-domain and multidomain grains, Geophys. J. Int., 2001, vol. 146, no. 1, pp. 20–30. doi 10.1046/j.0956-540x.2001.01421.x

    Article  Google Scholar 

  • Shcherbakova, V.V., Shcherbakov, V.P., Vodovozov, V.Yu., and Sycheva, N.K., Paleointensity at the Permian-Triassic boundary and in the Late Permian, Izv., Phys. Solid Earth, 2005, vol. 41, no. 11, pp. 931–944.

    Google Scholar 

  • Shcherbakova, V.V., Kovalenko, D.V., Shcherbakov, V.P., and Zhidkov, G.V., Paleointensity of the geomagnetic field in the Cretaceous (from Cretaceous rocks of Mongolia), Izv., Phys. Solid Earth, 2011, vol. 47, no. 9, pp. 775–791.

    Article  Google Scholar 

  • Shcherbakova, V.V., Bakhmutov, V.G., Shcherbakov, V.P., et al., Palaeointensity and palaeomagnetic study of Cretaceous and Palaeocene rocks from Western Antarctica, Geophys. J. Int., 2012, no. 189, pp. 204–228. doi 10.1111/j.1365-246X.2012.05357.x

    Google Scholar 

  • Shcherbakova, V.V., Zhidkov, G.V., Latyshev, A.V., and Shcherbakov, V.P., Estimating the variations in paleointensity from the Siberian traps of Maymecha-Kotuy and Norilsk regions, Izv., Phys. Solid Earth, 2013, vol. 49, no. 4, pp. 488–504.

    Article  Google Scholar 

  • Shipunov, S.V., Tests of significance in paleomagnetism, Izv., Phys. Solid Earth, 1999, vol. 35, no. 6, pp. 518–521.

    Google Scholar 

  • Solodovnikov, G.M., Paleointensity of the geomagnetic field in Early Triassic, Fiz. Zemli, 1994, no. 9, pp. 72–79.

    Google Scholar 

  • Tarduno, J.A., Cottrell, R.D., and Smirnov, A.V., High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 2001, vol. 291, no. 5509, pp. 1779–1783. doi 10.1126/science.1057519

    Article  Google Scholar 

  • Tarduno, J.A. and Cottrell, R.D., Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals, J. Geophys. Res., 2005, vol. 110, no. B11, B11101. doi 10.1029/2005jb003970

    Article  Google Scholar 

  • Tauxe, L. and Staudigel, H., Strength of the geomagnetic field in the Cretaceous Normal Superchron: new data from submarine basaltic glass of the Troodos Ophiolite, Geochem. Geophys. Geosyst., 2004, vol. 5, no. 2, Q02H06. doi 10.1029/2003gc000635

    Google Scholar 

  • Thellier, E. and Thellier, O., Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. de Geophys, 1959, vol. 15, pp. 285–376.

    Google Scholar 

  • Thomas, D.N. and Biggin, A.J., Does the Mesozoic dipole low really exist? EOS, Trans. Am. Geophys. Union, 2003, vol. 84, no. 11, pp. 97–104.

    Article  Google Scholar 

  • Wilson, R.L., The thermal demagnetization of natural magnetic moments in rocks, Geophys. J. R. Astr. Soc., 1961, vol. 5, no. 1, pp. 45–58. doi 10.1111/j/1365-246X.1961.tb02928.x

    Article  Google Scholar 

  • Zijderveld, J.D.A., The natural remanent magnetizations of the Exeter volcanic traps (Permian, Europe), Tectonophysics, 1967, vol. 4, no. 2, pp. 121–153. doi 10.1016/0040-1951(67)90048-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shcherbakova.

Additional information

Original Russian Text © V.V. Shcherbakova, G.V. Zhidkov, V.P. Shcherbakov, A.V. Latyshev, A.M. Fetisova, 2015, published in Fizika Zemli, 2015, No. 3, pp. 47–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, V.V., Zhidkov, G.V., Shcherbakov, V.P. et al. Verifying the mesozoic dipole low hypothesis by the Siberian trap data. Izv., Phys. Solid Earth 51, 362–382 (2015). https://doi.org/10.1134/S1069351315030155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351315030155

Keywords

Navigation