Skip to main content
Log in

A paleointensity study of Cretaceous volcanic rocks from the Western Cordillera, Colombia

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Cretaceous Normal Superchron is a period of great interest to investigate global scale variations of the geomagnetic field. Long periods of single polarity are still a matter of debate: up to now there are two contradicting theories, which try to relate geomagnetic field intensity and reversal rate. We aim to shed light on the geomagnetic field strength during the Cretaceous Normal Superchron because data are still scarce and of dissimilar quality. To obtain reliable, absolute paleointensity determinations we investigate volcanic rocks from the Western Cordillera of Colombia. Several age determinations allow relating the samples to an age of about 92.5 Ma. To characterize the samples, we investigate rock magnetic properties and determine the characteristic remanent magnetization behavior. To determine paleointensities, we use a multimethod approach: first, we apply the classic Thellier-Coe protocol, and then, the relatively new multispecimen method. Rock magnetic measurements indicate magnetite as the main ferrimagnetic mineral, a stable magnetization revealed by reversible and nearly reversible thermomagnetic curves, and grain sizes that are either in the pseudosingle domain range or a mixture of single and multidomain grains. Alternating field and thermal demagnetization are rather complex, although we observe a few vector diagrams with a single, essentially uni-vectorial component with a small viscous overprint. Paleointensity determination with the Thellier-Coe protocol was unsuccessful, while with the multispecimen protocol we obtained four successful determinations out of 20. The failure of the Thellier-Coe protocol can be attributed to multidomain grains, which were observed during demagnetization and in rock magnetic experiments, and to the inhomogeneity of the volcanic rocks. Our multispecimen paleointensity determinations support low field strength at around 90 Ma during the Cretaceous Normal Superchron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayona G., Jiménez G., Silva C., Cardona A., Montes C., Roncancio J. and Cordani U., 2010. Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. J. South Am. Earth Sci., 29, 817–831,. DOI: 10.1016/j.jsames.2009.10.005.

    Article  Google Scholar 

  • Besse J. and Courtillot V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res., 107, B11, DOI: 1029/2000JB000050.

    Google Scholar 

  • Biggin A.J., Strik G.H.M.A. and Langereis C.G., 2009. The intensity of the geomagnetic field in the late-Archaean: New measurements and an analysis of the updated IAGA palaeointensity database. Earth Planets Space, 61, 9–22.

    Article  Google Scholar 

  • Biggin A.J., McCormack A. and Roberts A., 2010. Paleointensity database updated and upgraded. Eos Trans. AGU, 91(2), 15.

    Article  Google Scholar 

  • Biggin A.J. and Paterson G.A., 2014. A new set of qualitative reliability criteria to aid inferences on palaeomagnetic dipole moment variations through geological time. Front. Earth Sci., 2, 1–9, DOI: 10.3389/feart.2014.00024.

    Google Scholar 

  • Bolshakov A.S. and Solodovnikov G.M., 1981. Intensity of the geomagnetic field in Late Cretaceous time. Izv.-Phys. Solid Earth, 17, 754–761.

    Google Scholar 

  • Bolshakov A.S., Gapeyev A.K., Tkhoa N.T.K. and Solodovnikov G.M., 1981. Determination of paleointensity of the geomagnetic field in the Late Cretaceous period from the magnetization of effusive rocks. Izv.-Phys. Solid Earth, 17, 306–310.

    Google Scholar 

  • Brandt D., Hartmann G.A., Yokoyama E., Catelani E.L. and Trindade R.I.F., 2009. Paleointensity data from Early Cretaceous Ponta Grossa dikes (Brazil) using a multisample method. Earth Planets Space, 61, 41–49.

    Article  Google Scholar 

  • Cande S.C. and Kent D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100(B4), 6093–6095, DOI: 10.1029 /94JB03098.

    Article  Google Scholar 

  • Case J., Barnes J., París Q.G., González I.H. and Viña A., 1973. Trans-Andean geophysical profile, southern Colombia. Geol. Soc. Am. Bull., 84, 2895–2904.

    Article  Google Scholar 

  • Channell J.E.T., Erba E., Nakanishi M. and Tamaki K., 1995. Late Jurassic - Early Cretaceous timescales and oceanic magnetic anomaly block models. In: Berggren W.A., Kent D.V., Aubry M. and Hardenbol J. (Eds), Geochronology, Time Scales and Stratigraphic Correlation. SEPM Special Publication 54, SEPM Society for Sedimentary Geology, Tulsa, OK, 51–63.

    Google Scholar 

  • Coe R., 1967. Paleointensity of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  • Courtillot V. and Besse J., 1987. Magnetic reversals, polar wander and core-mantle coupling. Science, 237, 1140–1147.

    Article  Google Scholar 

  • Cox A., Doell R.R. and Dalrymphe G.B., 1964. Reversals of the Earth’s magnetic field. Science, 144, 1537–1543.

    Article  Google Scholar 

  • Day R., Fuller M.D. and Schmidt V.A., 1977. Hysteresis properties of titano-magnetites: grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–266.

    Article  Google Scholar 

  • de Groot L.V, Biggin A.J., Dekkers M.J., Langereis C.G. and Herrero-Bervera E., 2013. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record. Nat. Commun., 4, 2727, DOI: 10.1038/ncomms3727.

    Article  Google Scholar 

  • Dekkers M.J. and Böhnel H.N., 2006. Reliable absolute palaeointensities independent of magnetic domain state. Earth Planet. Sci. Lett., 248, 508–517, DOI: 10.1016/j.epsl.2006.05.040.

    Article  Google Scholar 

  • Dunlop D. and Özdemir O., 1997. Rock Magnetism: Fundamentals And Frontiers. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107(B3), 2056, DOI: 10.1029/2001JB000486.

    Article  Google Scholar 

  • Dunlop D.J. and Argyle K.S., 1991. Separating multidomain and single-domain-like remanences in pseudo-single-domain magnetites (215-540 nm) by low-temperature demagnetization. J. Geophys. Res., 96, 2007–2017, DOI: 10.1029/90JB02338.

    Article  Google Scholar 

  • Fabian K. and Leonhardt R., 2010. Multiple-specimen absolute paleointensity determination: An optimal protocol including pTRM normalization, domain-state correction, and alteration test. Earth Planet. Sci. Lett., 297, 84–94, DOI: 10.1016/j.epsl.2010.06.006.

    Article  Google Scholar 

  • Fisher R.A., 1953. Dispersion on a sphere. Proc. R. Soc. London A, 217, 295–305.

    Article  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter., 91, 63–75, DOI: 10.1016/0031-9201(95)03049-3.

    Article  Google Scholar 

  • Goguitchaichvili A., Alva-Valdivia L., Urrutia-Fucugauchi J., Morales J. and Ferreira-Lopes O., 2002. On the reliability of Mesozoic dipole low: new absolute paleointensity results from Parana flood basalts (Brazil). Geophys. Res. Lett., 29, 1655, DOI: 10.1029/2002GL015242.

    Article  Google Scholar 

  • Hargraves R.B., Shagam R., Vargas R. and Rodríguez G.I., 1984. Paleomagnetic results from rhyolites (Early Cretaceous?) and andesite dikes at two localities in the Ocana area, northern Santander Massif, Colombia. Geol. Soc. Am. Mem., 162, 299–302, DOI: 10.1130/MEM162- p299.

    Article  Google Scholar 

  • Hunt C.P., Moskowitz B.M. and Banerjee S.K., 1995. Magnetic properties of rocks and minerals. In: Ahrens T.J. (Ed.), Rock Physics & Phase Relations: A Handbook of Physical Constants. American Geophysical Union, Washington, D.C., 189–204.

    Chapter  Google Scholar 

  • Ingham E., Heslop D., Roberts A.P., Hawkins R. and Sambridge M., 2014. Is there a link between geomagnetic reversal frequency and paleointensity? A Bayesian approach. J. Geophys. Res., 119, 5290–5304, DOI: 10.1002/2014JB010947.

    Article  Google Scholar 

  • Juárez M.T., Tauxe L., Gee J.S. and Pick T., 1998. The intensity of the Earth’s magnetic field over the past 160 million years. Nature, 394, 878–881.

    Article  Google Scholar 

  • Kerr A.C., Marriner G.F., Tarney J., Nivia A., Saunders A.D., Thirlwall M.F. and Sinton C.W., 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. J. Petrol., 38, 677–702.

    Article  Google Scholar 

  • Kerr A.C., Tarney J., Kempton P.D., Spadea P., Nivia A., Marriner G.F.and Duncan R.A., 2002. Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean- Colombian oceanic plateau. J. Geophys. Res., 107(B7), 2140, DOI: 10.1029/2001JB000790.

    Article  Google Scholar 

  • Kirschvink J., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astr. Soc., 62, 699–718.

    Article  Google Scholar 

  • Larson R.L. and Olson P., 1991. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett., 107, 437–447, DOI: 10.1016/0012-821X(91)90091-U.

    Article  Google Scholar 

  • Leonhardt R., 2006. Analyzing rock magnetic measurements: The RockMagAnalyzer 1.0 software. Comput. Geosci., 32, 1420–1431, DOI: 10.1016/j.cageo.2006.01.006.

    Article  Google Scholar 

  • Loper D.E. and McCartney K., 1986. Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett., 13, 1525–1528.

    Article  Google Scholar 

  • MacDonald W. and Opdyke N., 1972. Tectonic rotations suggested by paleomagnetic results from northern Colombia, South America. J. Geol. Res., 77, 5720–5730.

    Article  Google Scholar 

  • McFadden P.L. and McElhinny M.W., 1988. The combined analysis of remagnetisation circles and direct observations in paleomagnetism. Earth Planet. Sci. Lett., 87, 161–172.

    Article  Google Scholar 

  • Monster M.W.L., de Groot L.V. and Dekkers M.J., 2015. MSP-Tool: A VBA-based software tool for the analysis of multispecimen paleointensity data. Front. Earth Sci., 3, 86, DOI: 10.3389/feart.2015.00086.

    Article  Google Scholar 

  • Moreno-Sanchez M. and Pardo-Trujillo A., 2003. Stratigraphical and Sedimentological Constrains on Western Colombia: Implications on the Evolution of the Caribbean Plate. AAPG Memoir 79. The American Association of Petroleum Geologists, Tulsa, OK.

    Google Scholar 

  • Ozima M., Ozima M. and Kaneoka I., 1968. Potassium-Argon ages and magnetic properties of some dredged submarine basalts and their geophysical irnplications. J. Geophys. Res., 73, 711–723.

    Article  Google Scholar 

  • Paterson G.A., Tauxe L., Biggin A.J., Shaar R. and Jonestrask L.C., 2014. On improving the selection of Thellier-type paleointensity data. Geochem. Geophys. Geosyst., 15, 1180–1192, DOI: 10.1002/2013GC005135.

    Article  Google Scholar 

  • Perrin M. and Shcherbakov V., 1997. Paleointensity of the Earth’s magnetic field for the past 400 Ma: evidence for a dipole structure during the Mesozoic low. J. Geomag. Geoelectr., 49, 601–614.

    Article  Google Scholar 

  • Peters C., 1995. Unravelling magnetic mixtures in sediments, soils and rocks. PhD Thesis, University of Edinburgh, Scotland.

    Google Scholar 

  • Pick T. and Tauxe L., 1993. Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature, 366, 238–242.

    Article  Google Scholar 

  • Prévot M., Derder M., McWilliams M.M. and Thompson J., 1990. Intensity of the Earth’s magnetic field: Evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett., 97, 129–139.

    Article  Google Scholar 

  • Richards R.A., Duncan R.A. and Courtillot V.E., 1989. Flood basalts and hotspot tracks: Plume heads and tails. Science, 246, 103–107.

    Article  Google Scholar 

  • Shaw J., 1974. A new method of determining the magnitude of the palaeomagnetic field: Application to five historic lavas and five archaeological samples. Geophys. J. R. Astr. Soc., 39, 133–141, DOI: 10.1111/j.1365-246X.1974.tb05443.x.

    Article  Google Scholar 

  • Sherwood G., Shaw J., Baer G. and Mallik S.B., 1993. The strength of the geomagnetic field during the Cretaceous quiet zone: Palaeointensity results from Israeli and Indian lavas. J. Geomag. Geoelectr., 45, 339–360.

    Article  Google Scholar 

  • Sinton C.W., Duncan R.A., Storey M., Lewis J. and Estrada J.J., 1998. An oceanic flood basalt within the Caribbean plate. Earth Planet. Sci. Lett., 155, 221–235.

    Article  Google Scholar 

  • Solodovnikov G.M., 2001. Determination of the geomagnetic field intensity in the Santonian- Coniacian (Upper Cretaceous) from an effusive section in Azerbaijan. Izv.-Phys. Solid Earth, 37, 600–605.

    Google Scholar 

  • Tanaka H., Kono M. and Uchimura H., 1995. Some global features of paleointensity in geological time. Geophys. J. Int., 120, 97–102.

    Article  Google Scholar 

  • Tanaka H. and Kono M., 2002. Paleointensities from a Cretaceous basalt platform in Inner Mongolia, northeastern China. Phys. Earth Planet. Inter., 133, 147–157, DOI: 10.1016/S0031-9201(02)00091-2.

    Article  Google Scholar 

  • Tarduno J.A. and Cottrell R.D., 2005. Dipole strength and variation of the time-averaged reversing and non reversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res., 110, B11101, DOI: 10.1029JB 003970.

    Article  Google Scholar 

  • Tarduno J.A. and Smirnov A.V., 2001. Stability of the Earth with respect to the spin axis for the last 130 million years. Earth Planet. Sci. Lett., 184, 549–553, DOI: 10.1016/S0012- 821X(00)00348-4.

    Article  Google Scholar 

  • Tarduno J.A., Cottrell R.D. and Smirnov A.V., 2001. High geomagnetic intensity during the Mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291, 779–1783, DOI: 10.1126/science.1057519.

    Article  Google Scholar 

  • Tarduno J.A, Cottrell R.D. and Smirnov A.V., 2002. The Cretaceous superchrongeodynamo: observations near the tangent cylinder. Proc. Natl. Acad. Sci. USA, 99, 14020–14025, DOI: 10.1073/pnas.222373499.

    Article  Google Scholar 

  • Tauxe L. and Staudigel H., 2004. Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst., 5, Q02H06, DOI: 10.1029/2003GC000635.

    Google Scholar 

  • Tauxe L., 2006. Long-term trends in paleointensity: the contribution of DSDP/ODP submarine basaltic glass collections. Phys. Earth Planet. Inter., 156, 223–241.

    Article  Google Scholar 

  • Tauxe L., Gee J.S., Steiner M.B. and Staudigel H., 2013. Paleointensity results from the Jurassic: New constraints from submarine basaltic glasses of ODP Site 801C. Geochem. Geophys. Geosyst., 14, 4718–4733, DOI: 10.1002/ggge.20282.

    Article  Google Scholar 

  • Tauxe L., Shaar R., Jonestrask L., Swanson-Hysell N.L., Minnett R., Koppers A.A.P., Constable C.G., Jarboe N., Gaastra K. and Fairchild L., 2016. PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database. Geochem. Geophys. Geosyst., 17, 2450–2463, DOI: 10.1002/2016GC006307.

    Article  Google Scholar 

  • Thébault E., Finlay C.C., Beggan C.D., Alken P., Aubert J., Barrois O., Bertrand F., Bondar T., Boness A., Brocco L., Canet E., Chambodut A., Chulliat A., Coïsson P., Civet F., Du A., Fournier A., Fratter I., Gillet N., Hamilton B., Hamoudi M., Hulot G., Jager T., Korte M., Kuang W., Lalanne X., Langlais B., Léger J.-M., Lesur V., Lowes F.J., Macmillan S., Mandea M., Manoj C., Maus S., Olsen N., Petrov V., Ridley V., Rother M., Sabaka T.J., Saturnino D., Schachtschneider, R., Sirol O., Tangborn A., Thomson A., Tøffner-Clausen L., Vigneron P., Wardinski I. and Zvereva T., 2015. International Geomagnetic Reference Field: the 12th generation. Earth Planets Space, 67, 79, DOI: 10.1186/s40623-015-0228-9.

    Article  Google Scholar 

  • Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophys., 15, 285–376 (in French).

    Google Scholar 

  • Yamamoto Y., Tsunakawa H. and Shibuya H., 2003. Palaeointensity study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities. Geophys. J. Int., 153, 263–276, DOI: 10.1046/j.1365-246X.2003.01909.x.

    Article  Google Scholar 

  • Yamazaki T. and Yamamoto Y., 2014. Paleointensity of the geomagnetic field in the Late Cretaceous and earliest Paleogene obtained from drill cores of the Louisville seamount trail. Geochem. Geophys. Geosyst., 1, 2454–2466, DOI: 10.1002/2015GC005918.

    Article  Google Scholar 

  • Yu Y., Tauxe L. and Genevey A., 2004. Toward an optimal geomagnetic field intensity determination technique. Geochem. Geophys. Geosyst., 5, Q02H07, DOI: 10.1029/2003GC000630.

    Google Scholar 

  • Zhao X., Riisager P., Riisager J., Draeger U., Coe R.S. and Zheng Z., 2004. New palaeointensity results from Cretaceous basalt of Inner Mongolia, China. Phys. Earth Planet. Inter., 141, 131–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Kapper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapper, L., Morales, J., Calvo-Rathert, M. et al. A paleointensity study of Cretaceous volcanic rocks from the Western Cordillera, Colombia. Stud Geophys Geod 61, 264–289 (2017). https://doi.org/10.1007/s11200-016-0144-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0144-x

Keywords

Navigation