Skip to main content
Log in

Phenomenology of seismic macrofracture formation

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A phenomenological scheme is proposed for the formation of a seismic macrofracture in the crust through multiscale avalanche-like crack coalescence of the inverse cascade type. Relations connecting fractal dimensions of crack sets and the concentration criterion of coalescence of cracks that are required for the onset of multiscale fracture are obtained. It is shown that the enlargement of cracks from micro-to macroscales includes a relatively small number of hierarchical coalescence stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Bale and P. W. Schmidt, “Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties,” Phys. Rev. Lett. 53(6), 596–599 (1984).

    Article  Google Scholar 

  2. A. Block, W. von Bloch, T. Klenke, and H. J. Schellnhuber, “Multifractal Analysis of the Microdistribution of Elements in Sedimentary Structures Using Images from Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry,” J. Geophys. Res. 96, 16223–16230 (1991).

    Article  Google Scholar 

  3. A. Gabrielov, I. Zaliapin, W. Newman, and V. Keilis-Borok, “Colliding Cascades Model for Earthquake Prediction,” Geophys. J. Int. 143, 427–437 (2000).

    Article  Google Scholar 

  4. J. J. Gilman and H. C. Tong, “Quantum Tunneling As Elementary Fracture Process,” J. Appl. Phys. 42(9), 3479–3486 (1971).

    Article  Google Scholar 

  5. T. Hirata, “Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales,” Pure Appl. Geophys. 131(1–2), 157–170 (1989).

    Article  Google Scholar 

  6. T. Hirata, T. Satoh, and K. Ito, “Fractal Structure of Spatial Distribution of Microfracturing in Rock,” Geophys. J. R. Astron. Soc. 90(2), 369–374 (1987).

    Google Scholar 

  7. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

    Google Scholar 

  8. M. Matsushita, “Fractal Viewpoint of Fracture and Accretion,” J. Phys. Soc. Jpn. 54, 857–860 (1985).

    Article  Google Scholar 

  9. V. I. Mjachkin, W. F. Brace, G. A. Sobolev, and J. H. Dieterich, “Two Models for Earthquake Forerunners,” Pure Appl. Geophys. 113, 169–181 (1975).

    Article  Google Scholar 

  10. P. G. Okubo and K. Aki, “Fractal Geometry in the San Andreas Fault System,” J. Geophys. Res. B 92(1), 345–355 (1987).

    Article  Google Scholar 

  11. M. M. Poulton, N. Mojtaba, and I. W. Fabmer, “Scale Invariant Behavior of Massive and Fragmented Rock,” Int. J. Rock Mech. Min. Geomech. Abstr. 27, 219–221 (1990).

    Article  Google Scholar 

  12. C. G. Sammis and R. L. Biegel, “Fractals, Fault-Gouge and Friction,” in Fractals in Geophysics (Basel, 1989), pp. 255–271.

  13. G. A. Sobolev and A. D. Zav’yalov, “Concentration Criterion of Seismogenic Ruptures,” Dokl. Akad. Nauk SSSR 252(1), 69–71 (1980).

    Google Scholar 

  14. G. A. Sobolev and A. V. Kol’tsov, Large-Scale Modeling of Nucleation and Precursors of Earthquakes (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  15. A. Sornette, P. Davy, and D. Sornette, “Growth of Fractal Fault Patterns,” Phys. Rev. Lett. 65(18), 2266–2269 (1990).

    Article  Google Scholar 

  16. I. R. Stakhovsky and T. P. Belousov, “Scale Invariants in Seismotectonics,” Dokl. Akad. Nauk 347(2), 252–255 (1996).

    Google Scholar 

  17. N. G. Tomilin, “Hierarchical Properties of Acoustic Emission Accompanying Rock Fracture,” Preprint of Ioffe Physico-Technical Inst., Russ. Acad. Sci., St. Petersburg, 1997, p. 33.

  18. N. G. Tomilin and V. S. Kuksenko, “Statistical Kinetics of Rock Fracture: The Energy Hierarchy of the Process,” Fiz. Zemli, No. 10, 16–25 (2004) [Izvestiya, Phys. Solid Earth 40, 798–806 (2004).

  19. B. Velde, J. Dubois, G. Touchard, and A. Badri, “Fractal Analysis of Fractures in Rocks: the Cantor’s Dust Method,” Tectonophysics 179, 345–352 (1990).

    Article  Google Scholar 

  20. H. P. Xie, Fractals in Rock Mechanics. Geomechanics Research Series (Balkema, The Netherlands, 1992).

    Google Scholar 

  21. I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A Boolean Delay Equation Model of Colliding Cascades. Part I: Multiple Seismic Regimes,” J. Stat. Phys. 111(3/4), 815–837 (2003).

    Article  Google Scholar 

  22. I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A Boolean Delay Equation Model of Colliding Cascades. Part II: Prediction of Critical Transitions,” J. Stat. Phys. 111(3/4), 839–861 (2003).

    Article  Google Scholar 

  23. S. N. Zhurkov, “Kinetic Concept of the Strength of Solids,” Vestn. Akad. Nauk SSSR, No. 3, 46–52 (1968).

  24. S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, et al., “Concentration Criterion of Volume Fracture of Solids,” in Physical Processes in Earthquake Sources (Nauka, Moscow, 1980), pp. 78–86 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.R. Stakhovsky, 2008, published in Fizika Zemli, 2008, No. 7, pp. 58–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stakhovsky, I.R. Phenomenology of seismic macrofracture formation. Izv., Phys. Solid Earth 44, 570–576 (2008). https://doi.org/10.1134/S1069351308070070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351308070070

PACS numbers

Navigation