Skip to main content
Log in

Self-similar seismogenic structure of the crust: A review of the problem and a mathematical model

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The paper presents a brief review of studies of the structural organization of a seismogenic medium showing that the crust of seismically active regions possesses a fractal structure. A new mathematical model of the self-similar seismogenic structure (SSS) of the crust generalizing the reviewed publications is proposed on the basis of the scaling correspondence between the fault, seismic, and seismic energy multifractal fields of the crust. Multifractal fields of other physical origin can also be incorporated in the SSS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Allegre, J. L. Le Mouel, H. D. Chau, and C. Narteau, “Scaling Organization of Fracture Tectonics (SOFT) and Earthquake Mechanism,” Phys. Earth Planet. Inter. 92(3–4), 215–233 (1995).

    Article  Google Scholar 

  2. C. A. Aviles, C. H. Scholz, and J. Boatwright, “Fractal Analysis Applied to Characteristic Segments of the San-Andreas Fault,” J. Geophys. Res. 92, 331–350 (1987).

    Google Scholar 

  3. P. Bak and C. Tang, “Earthquakes As Self-Organized Criticality,” J. Geophys. Res. 94(15), 635–637 (1989).

    Google Scholar 

  4. P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality. An Explanation of the 1/f Noise,” Phys. Rev. Lett. 59, 381–384 (1987).

    Article  Google Scholar 

  5. T. P. Belousov and I. R. Stakhovsky, “Multifractal Analysis of Fault Clusters in the Junction Zone of the Pamirs and Tien Shan,” in Geophysical Processes in a Discrete Medium, Ed. by M. A. Sadovsky (RFFI, Moscow, 1993), pp. 50–63 [in Russian].

    Google Scholar 

  6. T. P. Belousov and I. R. Stakhovsky, “Active Crustal Faults: Scaling and Relation to Strong Earthquakes,” Dokl. Akad. Nauk SSSR 342(3), 382–385 (1995).

    Google Scholar 

  7. B. A. Bolt, Nuclear Explosions and Earthquakes (Freeman, San Francisco, 1976).

    Google Scholar 

  8. M. C. Boufadel, S. Lu, F. J. Molz, and D. Lavallee, “Multifractal Scaling of the Intrinsic Permeability,” Water Resources Res. 36(11), 3211–3222 (2000).

    Article  Google Scholar 

  9. T. Chelidze and Y. Gueguen, “Evidence of Fractal Fracture,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27(3), 223–225 (1990).

    Article  Google Scholar 

  10. I. P. Dobrovolskii, S. I. Zubkov, and V. I. Myachkin, “Sizes of the Zone of Earthquake Precursors,” in Modeling of Earthquake Precursors (Nauka, Moscow, 1980), pp. 7–44 [in Russian].

    Google Scholar 

  11. H. J. S. Feder and J. Feder, “Self-Organized Criticality in a Stick-Slip Process,” Phys. Rev. Lett. 66, 2669–2674 (1991).

    Article  Google Scholar 

  12. A. Gabrielov, I. Zaliapin, and W. Newman, “Keilis-Borok. V. “Colliding Cascades Model for Earthquake Prediction,” Geophys. J. Int. 143, 427–437 (2000).

    Article  Google Scholar 

  13. M. B. Geilikman, T. V. Golubeva, and V. F. Pisarenko, “Multifractal Patterns of Seismicity,” Earth Planet. Sci. Lett. 99(1/2), 127–132 (1990).

    Article  Google Scholar 

  14. J. J. Gilman and H. C. Tong, “Quantum Tunneling As Elementary Fracture Process,” J. Appl. Phys. 42(9), 3479–3486 (1971).

    Article  Google Scholar 

  15. H. Gupta and B. Rastorgi, Dams and Earthquakes (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  16. B. Gutenberg and C. F. Richter, “Magnitude and Energy of Earthquakes,” Ann. Geofis. 9, 1–25 (1956).

    Google Scholar 

  17. J. H. Healy, R. M. Hamilton, and C. B. Raleigh, “Earthquakes Induced by Fluid Injection and Explosion,” Tectonophysics, No. 9, 205–214 (1969).

  18. T. Hirata, “Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales,” Pure Appl. Geophys. 131(1–2), 157–170 (1989).

    Article  Google Scholar 

  19. K. Ito and M. Matsuzaki, “Earthquakes As a Self-Organized Critical Phenomenon,” J. Geophys. Res. 95(A5), 6853–6860 (1990).

    Google Scholar 

  20. Y. Y. Kagan and L. Knopoff, “The Spatial Distribution of Earthquakes: The Two-Point Correlation Function,” Geophys. J. R. Astron. Soc. 62, 303–320 (1980).

    Google Scholar 

  21. A. N. Kolmogorov, “A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number,” J. Fluid Mech. 13, 82–85 (1962).

    Article  Google Scholar 

  22. B. V. Kostrov, Mechanics of a Tectonic Earthquake Source (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  23. S. Yu. Kulabukhov, Discrete Mathematics (Min-vo Obsh. Profess. Obrazov. RF, Taganrog, 2001) [in Russian].

    Google Scholar 

  24. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  25. B. B. Mandelbrot, “Multifractal Measures, Especially for the Geophysicist,” Pure Appl. Geophys. 131(1–2), 5–42 (1989).

    Article  Google Scholar 

  26. M. Matsushita, “Fractal Viewpoint of Fracture and Accretion,” J. Phys. Soc. Japan 54, 857–860 (1985).

    Article  Google Scholar 

  27. V. I. Mjachkin, W. F. Brace, G. A. Sobolev, and J. H. Dieterich, “Two Models for Earthquake Forerunners,” Pure Appl. Geophys. 113, 169–181 (1975).

    Article  Google Scholar 

  28. F. Molz and G. Boman, “A Fractal-Based Stochastic Interpolation Scheme in Subsurface Hydrology,” Water Resources Res. 29, 3769–3774 (1993).

    Article  Google Scholar 

  29. C. Narteau, P. Shebalin, M. Holschneider, et al., “Direct Simulations of the Stress Redistribution in the Scaling Reorganization of Fracture Tectonics (SOFT) Model,” Geophys. J. Int. 141, 5–15 (2000).

    Article  Google Scholar 

  30. G. Nikolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Moscow, Mir, 1979).

    Google Scholar 

  31. A. Nur, “Dilatancy, Pore Fluids and Premonitory Variation of S/P Travel Times,” Bull. Seismol. Soc. Am. 62, 5–15 (1972).

    Google Scholar 

  32. A. Obukhov, “Some Specific Features of Atmospheric Turbulence,” J. Geophys. Res. 67, 3011–3014 (1962).

    Google Scholar 

  33. P. G. Okubo and K. Aki, “Fractal Geometry in the San Andreas Fault System,” J. Geophys. Res. 92(B1), 345–355 (1987).

    Google Scholar 

  34. G. Ouillon, C. Castaing, and D. Sornette, “Hierarchical Geometry of Faulting,” J. Geophys. Res. 101(B3), 5477–5487 (1996).

    Article  Google Scholar 

  35. G. Ouillon and D. Sornette, “Unbiased Multifractal Analysis: Application to Fault Patterns,” Geophys. Res. Lett. 23, 3409–3412 (1996).

    Article  Google Scholar 

  36. M. M. Poulton, N. Mojtaba, and I. W. Fabmer, “Scale Invariant Behavior of Massive and Fragmented Rock,” Int. J. Rock Mech. Min. Geomech. Abstr. 27, 219–221 (1990).

    Article  Google Scholar 

  37. H. F. Reid, “Elastic Rebound Theory,” Bull. Dept. Geol. Sci., No. 6 (1911).

  38. J. Rice, Earthquake Source Mechanics (Mir, Moscow, 1982) [in Russian].

    Google Scholar 

  39. T. Rikitake, Earthquake Prediction (Elsevier, Amsterdam, 1976; Mir, Moscow, 1979).

    Google Scholar 

  40. J. B. Rundle, “A Physical Model for Earthquakes. Fluctuation and Interaction,” J. Geophys. Res. 93, 6237–6254 (1988).

    Google Scholar 

  41. M. A. Sadovsky, T. V. Golubeva, V. F. Pisarenko, and M. G. Shnirman, “Characteristic Sizes of a Rock and Hierarchical Properties of Seismicity,” Fiz. Zemli, No. 2, 3–15 (1984).

  42. M. A. Sadovsky and V. F. Pisarenko, Seismic Process in a Fragmented Medium (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  43. C. H. Scholz, “Earthquakes and Faulting: Self-Organized Critical Phenomena with a Characteristic Dimension,” in Spontaneous Formation of Space-Time Structures and Criticality (Kluwer, Dordrecht, 1991), pp. 41–56.

    Google Scholar 

  44. R. F. Smalley, Jr., J. L. Chatelain, D. L. Turcotte, and R. Prevot, “A Fractal Approach to the Clustering of Earthquakes: Application to Seismicity of the New Hebrides,” Bull. Seismol. Soc. Am. 77, 1368–1381 (1987).

    Google Scholar 

  45. G. A. Sobolev and A. D. Zav'yalov, “On the Concentration Criterion of Seismogenic Faults,” Dokl. Akad. Nauk SSSR 252(1), 69–71 (1980).

    Google Scholar 

  46. A. Sornette, P. Davy, and D. Sornette, “Growth of Fractal Fault Patterns,” Phys. Rev. Lett. 65(18), 2266–2269 (1990).

    Article  Google Scholar 

  47. D. Sornette, Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer, Berlin, 2000).

    Google Scholar 

  48. D. Sornette and I. Kayo, “Theory of Self-Similar Oscillatory Finite-Time Singularities in Finance, Population and Rupture,” Int. J. Modern Phys. 14, 267–275 (2003).

    Article  Google Scholar 

  49. I. R. Stakhovsky, “Multifractal Analysis of Fault Structures in Basement Rocks,” in Basement Tectonics 11, Europe and Other Regions, Ed. by O. Oncken and C. Janssen (Kluwer, Dordrecht, 1996), pp. 101–110.

    Google Scholar 

  50. I. R. Stakhovsky, “A Model of Scaling Correspondence between Fault and Seismic Fields,” Fiz. Zemli, No. 7, 21–31 (2001) [Izvestiya, Phys. Solid Earth 37, 547–555 (2001)].

  51. I. R. Stakhovsky, “Widening of the f(a) Spectra of Seismic Fields in Preparation Zones of Strong Earthquakes,” Fiz. Zemli, No. 2, 74–78 (2002) [Izvestiya, Phys. Solid Earth 38, 156–160 (2002)].

  52. I. R. Stakhovsky, “Model of Scaling Correspondence between Fault and Seismic Fields of the Earth's Crust: Some Generalizations,” Fiz. Zemli, No. 9, 51–57 (2004) [Izvestiya, Phys. Solid Earth 40, 745–751 (2004a)].

  53. I. R. Stakhovsky, “Scaling Correspondence between Seismic and Seismic Energy Fields of the Earth's Crust,” Fiz. Zemli, No. 11, 38–46 (2004) [Izvestiya, Phys. Solid Earth 40, 927–934 (2004b)].

  54. I. R. Stakhovsky and T. P. Belousov, “Statistical Relations between Scaling Characteristics of Fault and Seismic Fields,” J. Earthquake Prediction Res. 5(4), 505–524 (1996).

    Google Scholar 

  55. I. R. Stakhovsky and T. P. Belousov, “Local Self-Similarity Parameters of Systems of Active Faults and a Spatial Distribution of Seismicity,” Dokl. Akad. Nauk SSSR 354(4), 545–548 (1997).

    Google Scholar 

  56. W. D. Stuart, “Diffusionless Dilatancy Model for Earthquake Precursors,” Geophys. Res. Lett. 1(6), 261–264 (1974).

    Google Scholar 

  57. I. R. Sykes, B. E. Shaw, and C. H. Scholz, “Rethinking Earthquake Prediction,” Pure Appl. Geophys. 155, 207–210 (1999).

    Article  Google Scholar 

  58. Y. Tessier, S. Lovejoy, and D. Schertzer, “Universal Multifractals: Theory and Observations for Rain and Clouds,” J. Appl. Meteorol. 32, 223–250 (1993).

    Article  Google Scholar 

  59. D. L. Turcotte, “A Fractal Approach to Probabilistic Seismic Hazard Assessment,” Tectonophysics 167, 171–177 (1989).

    Article  Google Scholar 

  60. D. L. Turcotte, “Fractals, Chaos, Self-Organized Criticality and Tectonics,” Terra Nova 4(1), 4–12 (1992).

    Article  Google Scholar 

  61. D. L. Turcotte, “Crustal Deformation and Fractals, a Review,” in Fractals and Dynamic Systems in Geoscience (Springer, 1994), pp. 7–25.

  62. B. Velde, J. Dubois, G. Touchard, and A. Badri, “Fractal Analysis of Fractures in Rocks: The Cantor's Dust Method,” Tectonophysics 179, 345–352 (1990).

    Article  Google Scholar 

  63. H. P. Xie, Fractals in Rock Mechanics (Geomechanics Research Series) (Balkema, 1992).

  64. I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A Boolean Delay Equation Model of Colliding Cascades. Part I: Multiple Seismic Regimes,” J. Stat. Phys. 111(3/4), 815–837 (2003).

    Article  Google Scholar 

  65. I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A Boolean Delay Equation Model of Colliding Cascades. Part II: Prediction of Critical Transitions,” J. Stat. Phys. 111(3/4), 815–837 (2003).

    Article  Google Scholar 

  66. G. P. Zhigalskii, “Nonequilibrium 1/f Noise,” Usp. Fiz. Nauk 173(5), 465–490 (2003).

    Article  Google Scholar 

  67. S. N. Zhurkov, “Kinetic Concept of Strength of Solids,” Vestn. Akad. Nauk SSSR, No. 3, 46–52 (1968).

  68. S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, et al., “The Concentration Criterion of Three-Dimensional Fracture of Solids,” in Physical Processes in Earthquake Sources (Nauka, Moscow, 1980), pp. 78–86 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.R. Stakhovsky, 2007, published in Fizika Zemli, 2007, No. 12, pp. 35–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stakhovsky, I.R. Self-similar seismogenic structure of the crust: A review of the problem and a mathematical model. Izv., Phys. Solid Earth 43, 1012–1023 (2007). https://doi.org/10.1134/S106935130712004X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935130712004X

PACS numbers

Navigation