Skip to main content
Log in

Improving the Quality of X-Ray Images Formed by a Diffraction Lens from a Two-Block Crystalline System

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The possibility of improving the quality of X-ray images formed using diffraction on a two-block crystalline system is considered. It is shown that the low spatial coherence of the initial radiation improves imaging quality. Conventional wide-focus X-ray tubes can be used as a source for such radiation. The feasibility of using a scanning scheme to reduce the background level in the formed image was also considered by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Indenbom, V.I., Slobodetskii, I.S., and Truni, K.G., Sov. Phys. JETP, 1974, vol. 39, no. 3, p. 542.

    ADS  Google Scholar 

  2. Authier, A., Dynamical Theory of X-Ray Diffraction, Oxford, Oxford University Press, 2001.

    Google Scholar 

  3. Suvorov, E.V. and Polovinkina, V.I., JETP Lett., 1974, vol. 20, no. 5, p. 145.

    ADS  Google Scholar 

  4. Indenbom, V.L. and Aladzhadzhyan, G.M., Dokl. Akad. Nauk SSSR [in Russian], 1976, vol. 227, no. 4, p. 827.

    Google Scholar 

  5. Indenbom, V.L. and Suvorov, E.V., JETP Lett., 1976, vol. 23, no. 9, p. 441.

    ADS  Google Scholar 

  6. Indenbom, V.L., Suvorov, E.V., and Slobodetskii, I.S., Sov. Phys. JETP, 1976, vol. 44, no. 1, p. 187.

    ADS  Google Scholar 

  7. Levonian, V., Mezhvuzovskiy sbornik nauchnykh trudov (Interuniversity collection of scientific papers) [in Russian], Yerevan, Yerevan State University Publishing House, 1984, p. 42.

    Google Scholar 

  8. Egiazaryan, A.M., Truni, K.G., and Mkrtchyan, A.R., JETP Letters, 1998, vol. 68, no. 9, p. 711.

    Article  ADS  Google Scholar 

  9. Bonse, U. and Hart, M., Applied Physics Letters, 1965, vol. 6, no. 8, p. 155.

    Article  ADS  Google Scholar 

  10. Indenbom, V.L. and Chukhovskii, F.N., Sov. Phys. Usp., 1972, vol. 15, p. 298.

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Committee on Higher Education and Science of the Ministry of Education and Science of the Republic of Armenia and grant ANSEF 23AN: PS-opt-2992.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Haroutunyan.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated by V. Musakhanyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX 1

APPENDIX 1

The purpose of this Appendix is to estimate the signal-to-background energy flux ratio of the image for the initial δ-shaped wave. With an incident narrow beam under the exact Bragg direction, according to [1], the twice-reflected electric field in the second crystal block is represented by the expression

$$E\left( {x,{{z}_{1}},{{z}_{2}}} \right) \sim \int\limits_{ - \infty }^\infty {\frac{{\sin \Omega {{z}_{1}}\sin \Omega {{z}_{2}}}}{{{{\Omega }^{2}}}}\exp \left( {i\omega x} \right)} d\omega ,$$
(1)

where \(\Omega = \sqrt {{{\omega }^{2}} + {{{{\chi }^{2}}} \mathord{\left/ {\vphantom {{{{\chi }^{2}}} 4}} \right. \kern-0em} 4}} \). Here we use a dimensionless coordinate system (x, z) in the scattering plane with axes x parallel and z perpendicular to the surfaces of the crystal blocks, as defined in [10]. In this case, z1 is the thickness of the first crystalline block, and z2 is the depth of the point in question in the second crystalline block.

Converting the sines in (1) to exponentials, up to an insignificant constant factor, we obtain

$$E\left( {x,{{z}_{1}},{{z}_{2}}} \right) = {{E}_{1}}\left( {x,{{z}_{1}},{{z}_{2}}} \right) + {{E}_{2}}\left( {x,{{z}_{1}},{{z}_{2}}} \right),$$
(2)

where

$$\begin{gathered} {{E}_{1}}\left( {x,{{z}_{1}},{{z}_{2}}} \right) = \frac{1}{2}\sum\limits_{\nu = \pm 1} {\int\limits_{ - \infty }^{ + \infty } {\exp \left\{ {i\left( {\nu \Omega \delta + \omega x} \right)} \right\}\frac{{d\omega }}{{{{\Omega }^{2}}}}} } = \int\limits_{ - \infty }^{ + \infty } {\frac{{\cos \left( {\Omega \delta } \right)}}{{{{\Omega }^{2}}}}{{e}^{{i\omega x}}}d\omega } , \\ {{E}_{2}}\left( {x,{{z}_{1}},{{z}_{2}}} \right) = - \frac{1}{2}\sum\limits_{\nu = \pm 1} {\int\limits_{ - \infty }^{ + \infty } {\exp \left\{ {i\left( {\nu \Omega Z + \omega x} \right)} \right\}\frac{{d\omega }}{{{{\Omega }^{2}}}}} } = - \int\limits_{ - \infty }^{ + \infty } {\frac{{\cos \left( {\Omega Z} \right)}}{{{{\Omega }^{2}}}}{{e}^{{i\omega x}}}d\omega } , \\ \end{gathered} $$
(3)

\(Z = {{z}_{2}} + {{z}_{1}}\), \(\delta = {{z}_{2}} - {{z}_{1}}\). The field \({{E}_{1}}\left( {x,{{z}_{1}},{{z}_{2}}} \right)\) corresponds to the above-mentioned rays, which undergo interbranch scattering when transitioning from the first crystalline block to the second and are focused at z2 = z1, while \({{E}_{2}}\left( {x,{{z}_{1}},{{z}_{2}}} \right)\)—to the rays that do not undergo interbranch scattering, diverge and form a background. This can be confirmed by applying the stationary phase method to the integrals under the summation signs in (3), which in the case \(\delta \chi \gg 1\) will result in the ray trajectories in the second block

$$x = \mp \frac{\omega }{{\sqrt {{{\omega }^{2}} + {{{{\chi }^{2}}} \mathord{\left/ {\vphantom {{{{\chi }^{2}}} 4}} \right. \kern-0em} 4}} }}\delta ,\,\,\,\,\left( { - \infty < \omega < + \infty } \right)$$

for the terms of the field \({{E}_{1}}\) and

$$x = \mp \frac{\omega }{{\sqrt {{{\omega }^{2}} + {{{{\chi }^{2}}} \mathord{\left/ {\vphantom {{{{\chi }^{2}}} 4}} \right. \kern-0em} 4}} }}Z,\,\,\,\,\left( { - \infty < \omega < + \infty } \right)$$

for the terms of \({{E}_{2}}\).

From (3), using Parseval’s theorem for the energy fluxes of fields \({{E}_{1}}\), and \({{E}_{2}}\), at z2 = z1, we obtain, respectively

$$\begin{gathered} {{\Phi }_{1}} \equiv \int\limits_{ - \infty }^{ + \infty } {{{{\left| {{{E}_{1}}\left( x \right)} \right|}}^{2}}dx = \int\limits_{ - \infty }^{ + \infty } {\frac{{d\omega }}{{{{\Omega }^{4}}}}} = \frac{8}{{{{\chi }^{3}}}}} \int\limits_{ - \infty }^{ + \infty } {\frac{{dp}}{{{{{\left( {{{p}^{2}} + 1} \right)}}^{2}}}}} , \\ {{\Phi }_{2}} \equiv \int\limits_{ - \infty }^{ + \infty } {{{{\left| {{{E}_{2}}\left( x \right)} \right|}}^{2}}dx = \int\limits_{ - \infty }^{ + \infty } {\frac{{{{{\cos }}^{2}}\left( {\Omega Z} \right)}}{{{{\Omega }^{4}}}}d\omega } } = \frac{1}{2}\int\limits_{ - \infty }^{ + \infty } {\frac{{1 + \cos \left( {2\Omega Z} \right)}}{{{{\Omega }^{4}}}}d\omega } \\ = \frac{4}{{{{\chi }^{3}}}}\left[ {\int\limits_{ - \infty }^{ + \infty } {\frac{{dp}}{{{{{\left( {{{p}^{2}} + 1} \right)}}^{2}}}}} + \int\limits_{ - \infty }^{ + \infty } {\frac{{\cos \left( {\sqrt {{{p}^{2}} + 1} Z\chi } \right)}}{{{{{\left( {{{p}^{2}} + 1} \right)}}^{2}}}}dp} } \right]. \\ \end{gathered} $$

Using table integral \(\int_{ - \infty }^{ + \infty } {{{{\left( {{{p}^{2}} + 1} \right)}}^{{ - 2}}}dp = {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}} \) and computing the last integral in the expression of \({{\Phi }_{2}}\) using the stationary phase method, in the case of \(Z\chi \gg 1\), we obtain

$${{\Phi }_{1}} = \frac{{4\pi }}{{{{\chi }^{3}}}},\,\,\,\,{{\Phi }_{2}} \approx {{\Phi }_{1}}\left[ {\frac{1}{2} + \sqrt {\frac{2}{{\pi Z\chi }}} \;\cos \left( {\frac{\pi }{4} + Z\chi } \right)} \right] \approx \frac{{{{\Phi }_{1}}}}{2}.$$

Thus, when \(\delta = 0\) and \(Z\chi \gg 1\), the signal-to-background energy flux ratio is close to 2.

Note that in transitioning from dimensionless coordinates to normal ones, the condition \(Z\chi \gg 1\) is transformed to \({{2\pi \left( {{{t}_{1}} + {{t}_{2}}} \right)} \mathord{\left/ {\vphantom {{2\pi \left( {{{t}_{1}} + {{t}_{2}}} \right)} {\Lambda \gg 1}}} \right. \kern-0em} {\Lambda \gg 1}}\), where \({{t}_{1}}\) and \({{t}_{2}}\) are the thicknesses of the first and second crystalline blocks in normal dimensions, respectively.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroutunyan, L.A. Improving the Quality of X-Ray Images Formed by a Diffraction Lens from a Two-Block Crystalline System. J. Contemp. Phys. 58, 435–440 (2023). https://doi.org/10.1134/S1068337223040205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223040205

Keywords:

Navigation