Skip to main content
Log in

Preparation of the Ferromagnetic Intermetallic Compound Ni3Fe by Solution Combustion Synthesis

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The intermetallic compound Ni3Fe was obtained using the solution combustion synthesis (SCS) method, based on heating an aqueous solution containing nitrates of the corresponding metals and hexamethylenetetramine (HMTA) in a nitrogen atmosphere. The limits for the implementation of a self-propagating reaction in the metal nitrates-HMTA system were determined depending on the amount of HMTA in the reacting mixture (n). It has been established that by changing the value of n it is possible to control phase composition and microstructure of the obtained SCS products. The X-ray examinations have shown that at n = 6, a single-phase target product Ni3Fe is obtained, and electron microscopic studies indicated that the product is characterized by a pronounced porous structure because of abundant gas evolution during the SCS process. Based on thermogravimetric analyses of the individual compounds and the mixture of reagents (iron and nickel nitrates with HMTA), a possible mechanism for forming the target Ni3Fe intermetallic compound is discussed. The magnetic characteristics of the synthesized substance have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Guo, M., Meng, H., Jin, J., and Mi, J., J. Mater. Chem. A, 2023, vol. 11, p. 6452.

    Article  Google Scholar 

  2. Li, Zh., Wu, X., Jiang, X., Shen, B., Teng, Zh., Sun, D., Fu, G., and Tang, Y., Adv. Powder Mat., 2022, vol. 1, p. 100020.

    Article  Google Scholar 

  3. Wei, G., Shen, Y., Zhao, X., Wang, Y., Zhang, W., and An, C., Adv. Funct. Mater., 2022, vol. 32, p. 2109709.

    Article  Google Scholar 

  4. Wang, Y., Shang, Y., and Cao, Zh., Chem. Eng. J., 2022, vol. 439, p. 135722.

    Article  Google Scholar 

  5. Tan, J., Thomas, T., Liu, J., Yang, L., Pan, L., Cao, R., Shen, H., Wang, J., Liu, J., and Yang, M., Chem. Eng. J., 2020, vol. 395, p. 125151.

    Article  Google Scholar 

  6. Gong, H., Zheng, X., Zeng, K., Yang, B., Liang, X., Li, L., Tao, Y., and Yang, R., Carbon, 2021, vol. 174, p. 475.

    Article  Google Scholar 

  7. Lai, Ch., Wang, J., Lei, W., Xuan, C., Xiao, W., Zhao, T., Huang, T., Chen, L., Zhu, Y., and Wang, D., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 38093.

    Article  Google Scholar 

  8. Li, Z., Jang, H., Qin, D., Jiang, X., Ji, X., Kim, G., Zhang, L., Liu, X., and Cho, J., J. Mater. Chem. A, 2021, vol. 9, p. 4043.

    Google Scholar 

  9. Mazeeva, A.K., Staritsyn, M.V., Bobyr, V.V., Manninen, S.A., Kuznetsov, P.A., and Klimov, V.N., J. Alloys Compd., 2020, vol. 814, p. 152315.

    Article  Google Scholar 

  10. Chicinas, I., Geoffroy, O., Isnard, O., and Pop, V., J. Magn. Magn. Mater., 2005, vol. 290-291, p. 1531.

    Article  ADS  Google Scholar 

  11. Chicinaş, I., Pop, V., Isnard, O., Le Breton, M., and Juraszek, J.M., J. Alloys Compd., 2003, vol. 352, p. 34.

    Article  Google Scholar 

  12. Coey, J.M.D., J. Alloys Compd., 2001, vol. 326, p. 2.

    Article  Google Scholar 

  13. Aruna, S.T. and Mukasyan, A.S., Solid State Mater. Sci., 2008, vol. 12, p. 44.

    Google Scholar 

  14. Patil, K.C., Aruna, S.T., and Mimani, T., Solid State Mater. Sci., 2002, vol. 6, p. 507.

    Google Scholar 

  15. Manukyan, Kh.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., J. Phys. Chem. C, 2013, vol. 117, p. 24417.

    Article  Google Scholar 

  16. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, Kh.V., Chem. Rev., 2016, vol. 23, p. 14493.

    Article  Google Scholar 

  17. Khort, A., Roslyakov, S., and Loginov, P., Nano-Structures & Nano-Objects, 2021, vol. 26, p. 10072.

    Article  Google Scholar 

  18. Deshpande, K., Mukasyan, A.S., and Varma, A., Chem. Mater., 2004, vol. 16, p. 4896.

    Article  Google Scholar 

  19. Carlos, E., Martins, R., Fortunato, E., and Branquinho, R., Chem. Eur. J., 2020, vol. 26, p. 9099.

    Article  Google Scholar 

  20. Erri, P., Nader, J., and Varma, A., Adv. Mater., 2008, vol. 20, p. 1243.

    Article  Google Scholar 

  21. Kumar, A., Wolf, E.E., and Mukasyan, A.S., AIChE J., 2011, vol. 57, p. 3473.

    Article  ADS  Google Scholar 

  22. Yermekova, Z., Roslyakov, S.I., Kovalev, D.Y., Danghyan, V., and Mukasyan, A.S., J. Sol-Gel Sci. Technol., 2020, vol. 94, p. 310.

    Article  Google Scholar 

  23. Zhao, Sh., Li, M., Han, M., Xu, D., Yang, J., Lin, Y., Shi, N., Lu, Y., Yang, R., Liu, B., Dai, Zh., and Baoet. J., Adv. Funct. Mater., 2018, vol. 28, p. 1706018.

    Article  Google Scholar 

  24. Cacciamani, G., De Keyzer, J., Ferro, R., Klotz, U.E., Lacaze, J., and Wollants, P., Intermetallics, 2006, vol. 14, p. 1312.

    Article  Google Scholar 

  25. Gusev, E.A., Dalidovich, S.V., and Krasovskaya, L.I., Thermochim. Acta, 1985, vol. 93, p. 21.

    Article  Google Scholar 

  26. Arzumanyan, A.S., Amirkhanyan, N.G., Grigoryan, Y.G., and Kharatyan, S.L., Russ. J. Phys. Chem. B., 2023, vol. 17, p. 122.

    Article  Google Scholar 

  27. Brockner, W., Ehrhardt, C., and Gjikaj, M., Thermochim. Acta, 2007, vol. 456, p. 64.

    Article  Google Scholar 

  28. Crangle, J. and Goodman, G.M., Math. Phys. Sci., 1971, vol. 321, p. 477.

    Google Scholar 

  29. Wack, M., Volk, M., Wei, Q., Lühr, H., Wicht, J., Gilder, S.A., and Holschneider, M., Astrophys. Space Sci. Lib., 2018, vol. 448, p. 383.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

M. Zakaryan and N. Amirkhanyan express their gratitude to the Enterprise Incubator Foundation for their support.

Funding

The Science Committee of the Republic of Armenia financially supported the study within the framework of Scientific Projects No. 21T-1D227 and 1-6/23-I/IPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Harutyunyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Musakhanyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhanyan, N.H., Grigoryan, Y.G., Zakaryan, M.K. et al. Preparation of the Ferromagnetic Intermetallic Compound Ni3Fe by Solution Combustion Synthesis. J. Contemp. Phys. 58, 299–304 (2023). https://doi.org/10.1134/S1068337223030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223030040

Keywords:

Navigation