Skip to main content

Magnetic Properties of the Iron–Nickel System: Pressure, Composition, and Grain Size

  • Chapter
Magnetic Fields in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 448))

Abstract

We present an introduction to FeNi alloys as they appear in nature and how their magnetic properties can be studied in the laboratory. Meteorites provide natural samples which can carry information about our early Solar System and the magnetic fields present at that time. Grain size, and therefore domain state, of magnetic particles is the key to understanding their ability to record magnetic information on geological time scales. Material specific properties can be easier studied and optimized for technological applications from synthetic samples. We present common synthesis methods as well as analytical procedures to analyze the composition, crystal structure, grain size, and magnetic properties of FeNi alloys. We present data compiled from the literature together with our own results from samples synthesized by mechanical alloying and melting. In particular, we demonstrate changes in hysteresis and backfield parameters as well as Curie temperatures linked to composition, pressure, and alloying. The single-domain (SD) threshold in FeNi alloys remains unknown due to methodical limits in grain size and strong magnetic interactions between individual particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a more in depth discussion of the structures and a full phase diagram see Swartzendruber et al. (1991).

References

  • Akdogan, N.G., Hadjipanayis, G.C., Sellmyer, D.J.: Anisotropic Sm-(Co,Fe) nanoparticles by surfactant-assisted ball milling. J. Appl. Phys. 105(7), 07A710 (2009)

    Article  Google Scholar 

  • Bassett, W.A.: Diamond anvil cell, 50th birthday. High Pressure Res. 29(2), 163–186 (2009). doi:10.1080/08957950802597239

    Article  ADS  Google Scholar 

  • Bolsoni, R., Drago, V., Lima, E. Jr.: Chemical synthesis and characterization of a nanometric fe50ni50 alloy. Mater. Sci. Forum 403, 51–56 (2002). doi:10.4028/www.scientific.net/MSF.403.51

  • Buchwald, V.F.: The mineralogy of iron meteorites. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 286(1336), 453–491 (1977)

    Article  ADS  Google Scholar 

  • Butler, R.F., Banerjee, S.K.: Single-domain grain-size limits for metallic iron. J. Geophys. Res.: Solid Earth 80(2), 252–259

    Article  ADS  Google Scholar 

  • Cao, J., Qin, Y., Li, M., Zhao, S., Li, J.: Sol–gel combustion synthesis of magnetic MnFe2O4 oxide and FeNi alloy: product dependence on the reduction ability. Appl. Phys. A 117(4), 2019–2023 (2014) doi:10.1007/s00339-014-8611-0

    Article  ADS  Google Scholar 

  • Chakka, V.M., Altuncevahir, B., Jin, Z.Q., Li, Y., Liu, J.P.: Magnetic nanoparticles produced by surfactant-assisted ball milling. J. Appl. Phys. 99(8), 08E912 (2006)

    Article  Google Scholar 

  • Chau, J.L.H.: Synthesis of Ni and bimetallic FeNi nanopowders by microwave plasma method. Mater. Lett. 61(13), 2753–2756 (2007). doi:10.1016/j.matlet.2006.04.125

    Article  Google Scholar 

  • Chen, Y.C., Zheng, F.C., Min, Y.L., Wang, T., Zhao, Y.G.: Synthesis and properties of magnetic FeNi3 alloyed microchains obtained by hydrothermal reduction. Solid State Sci. 14(7), 809–813 (2012). doi:10.1016/j.solidstatesciences.2012.04.006

    Article  ADS  Google Scholar 

  • Cheung, C., Djuanda, F., Erb, U., Palumbo, G.: Electrodeposition of nanocrystalline Ni-Fe alloys. Nanostruct. Mater. 5(5), 513–523 (1995). doi:10.1016/0965-9773(95)00264-F

    Article  Google Scholar 

  • Clarke, R.S., Scott, E.R.D.: Tetrataenite; ordered FeNi, a new mineral in meteorites. Am. Miner. 65(7–8), 624–630 (1980)

    ADS  Google Scholar 

  • Crangle, J., Goodman, G.M.: The magnetization of pure iron and nickel. Proc. R. Soc. A: Math. Phys. Eng. Sci. 321(1547), 477–491

    Article  ADS  Google Scholar 

  • Crangle, J., Hallam, G.C.: The magnetization of face-centred cubic and body-centred cubic iron + nickel alloys. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 272(1348), 119–132 (1963)

    Article  ADS  Google Scholar 

  • Davarpanah, A.M., Mirzae, A.A., Sargazi, M., Feizi, M.: Magnetic properties of Fe-Ni nanoparticles prepared by co-precipitation method. J. Phys.: Conf. Ser. 126(1), 012065 (2008). doi:10.1088/1742-6596/126/1/012065

    Article  Google Scholar 

  • Day, R., Fuller, M.D., Schmidt, V.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13(4), 260–267 (1977)

    Article  ADS  Google Scholar 

  • Ding, J., Li, Y.Y., Shi, Y., Chen, L.F., Deng, C.R., Fuh, S.H., Li, Y.: A structural, magnetic and microwave study on mechanically milled Fe-based alloy powders. J. Magn. Magn. Mater. 247(3), 249–256 (2002)

    Article  ADS  Google Scholar 

  • Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B., Greneche, J.M.: Characterization of Fe and Fe50Ni50 ultrafine nanoparticles synthesized by inert gas-condensation method. Physica B: Condens. Matter 404(20), 3824–3829 (2009a). doi:10.1016/j.physb.2009.07.074

    Article  ADS  Google Scholar 

  • Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B., Greneche, J.M.: Structure and magnetic properties of Fe-rich nanostructured Fe100−XNi X powders obtained by mechanical alloying. Phys. Proc. 2(3), 693–700 (2009b)

    Article  ADS  Google Scholar 

  • Dong, X.L., Zhang, Z.D., Zhao, X.G., Chuang, Y.C., Jin, S.R., Sun, W.M.: The preparation and characterization of ultrafine Fe–Ni particles. J. Mater. Res. 14(2), 398–406 (1999). doi:10.1557/JMR.1999.0058

    Article  ADS  Google Scholar 

  • Dubrovinskaia, N., Dubrovinsky, L., Solopova, N.A., Abakumov, A., Turner, S., Hanfland, M., Bykova, E., Bykov, M., Prescher, C., Prakapenka, V.B., Petitgirard, S., Chuvashova, I., Gasharova, B., Mathis, Y.L., Ershov, P., Snigireva, I., Snigirev, A.: Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2(7) (2016). doi:10.1126/sciadv.1600341. http://advances.sciencemag.org/content/2/7/e1600341.full.pdf

    Article  ADS  Google Scholar 

  • Dunlop, D.J.: The rock magnetism of fine particles. Phys. Earth Planet. Inter. 26(1-2), 1–26 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Dunlop, D.J.: Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res.: Solid Earth 107(B3), 2056 (2002)

    Google Scholar 

  • Dunlop, D.J., Özdemir, Ö.: Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  • Eastman, J.A., Beno, M.A., Knapp, G.S., Thompson, L.J.: X-ray diffraction characterization of defect behavior in nanocrystalline nickel during annealing. Nanostruct. Mater. 6(5), 543–546 (1995). doi:10.1016/0965-9773(95)00116-6

    Article  Google Scholar 

  • Gaffet, E., Hamzaoui, R., Elkedim, O.: Milling conditions effect on structure and magnetic properties of mechanically alloyed Fe–10% Ni and Fe–20% Ni alloys. Mater. Sci. Eng. A 381(1–2), 363–371 (2004)

    Google Scholar 

  • Gattacceca, J., Rochette, P.: Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett. 227(3–4), 377–393 (2004). doi:10.1016/j.epsl.2004.09.013

    Article  ADS  Google Scholar 

  • Gilbert, A., Owen, W.: Diffusionless transformation in iron–nickel, iron-chromium and iron-silicon alloys. Acta Metall. 10(1), 45–54 (1962). doi:10.1016/0001-6160(62)90185-2

    Article  Google Scholar 

  • Gilder, S.A., Egli, R., Hochleitner, R., Roud, S.C., Volk, M.W.R., Le Goff, M., de Wit, M.: Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: implications for the formation pressure of diamonds. J. Geophys. Res.: Solid Earth 116(B10), B10101 (2011). doi:10.1029/2011JB008292

    Google Scholar 

  • Goldstein, J.I., Yang, J., Kotula, P.G., Michael, J.R., Scott, E.R.D.: Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteorit. Planet. Sci. 44(3), 343–358 (2009). doi:10.1111/j.1945-5100.2009.tb00737.x

    Article  ADS  Google Scholar 

  • Goldstein, J.I., Yang, J., Scott, E.R.D.: Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces. Geochim. Cosmochim. Acta 140, 297–320 (2014). doi:10.1016/j.gca.2014.05.025

    Article  ADS  Google Scholar 

  • Gurmen, S., Ebin, B., Stopić, S., Friedrich, B.: Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J. Alloys Compd. 480(2), 529–533 (2009). doi:10.1016/j.jallcom.2009.01.094

    Article  Google Scholar 

  • Hamzaoui, R., Elkedim, O.: Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills. J. Alloys Compd. 573, 157–162 (2013)

    Article  Google Scholar 

  • Hamzaoui, R., Elkedim, O., Fenineche, N., Gaffet, E., Craven, J.: Structure and magnetic properties of nanocrystalline mechanically alloyed Fe–10% Ni and Fe–20% Ni. Mater. Sci. Eng. A 360(1–2), 299–305 (2003)

    Article  Google Scholar 

  • Hausch, G.: Magnetovolume effects in invar alloys: spontaneous and forced volume magnetostriction. Phys. Status Solidi (A) 18(2), 735–740 (1973). doi:10.1002/pssa.2210180236

    Article  ADS  Google Scholar 

  • Howald, R.A.: The thermodynamics of tetrataenite and awaruite: a review of the Fe-Ni phase diagram. Metall. Mater. Trans. A 34(9), 1759–1769 (2003). doi:10.1007/s11661-003-0142-9

    Article  Google Scholar 

  • Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1(5), 482–501 (2005). doi:10.1002/smll.200500006

    Article  MathSciNet  Google Scholar 

  • Inokuti, Y., Cantor, B.: Overview 15 the microstructure and kinetics of martensite transformations in splat-quenched Fe and FeNi alloys—II. FeNi alloys. Acta Metall. 30(2), 343–356 (1982). doi:10.1016/0001-6160(82)90214-0

    Article  Google Scholar 

  • Kaito, C., Saito, Y., Fujita, K.: Ordered structure in alloy grains of iron–nickel produced by the gas evaporation technique. Jpn. J. Appl. Phys. 28, L694–L696 (1989). doi:10.1143/JJAP.28.L694

    Article  ADS  Google Scholar 

  • Kieling, V.C.: Parameters influencing the electrodeposition of Ni-Fe alloys. Surf. Coat. Technol. 96(2–3), 135–139 (1997). doi:10.1016/S0257-8972(97)00078-9

    Article  Google Scholar 

  • Koch, C.C.: Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct. Mater. 9(1–8), 13–22 (1997)

    Article  Google Scholar 

  • Kodama, D., Shinoda, K., Kasuya, R., Tohji, K,. Doi, M., Balachandran, J.: Synthesis of submicron sized Fe20Ni80 particles and their magnetic properties. J. Appl. Phys. 107(9), 09A320 (2010). doi:10.1063/1.3334170

    Article  Google Scholar 

  • Kouvel, J.S., Wilson, R.H.: Magnetization of iron–nickel alloys under hydrostatic pressure. J. Appl. Phys. 32(3), 435 (1961). doi:10.1063/1.1736020

    Article  ADS  Google Scholar 

  • Kuhrt, C., Schultz, L.: Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe–Ni. J. Appl. Phys. 73(10), 6588 (1993). doi:10.1063/1.352573

    Article  ADS  Google Scholar 

  • Lappe, S.C.L.L., Church, N.S., Kasama, T., da Silva Fanta, A.B., Bromiley, G., Dunin-Borkowski, R.E., Feinberg, J.M., Russell, S., Harrison, R.J.:Mineral magnetism of dusty olivine: A credible recorder of pre-accretionary remanence. Geochem. Geophys. Geosyst. 12(12), 1525–2027 (2011). http://dx.doi.org/10.1029/2011GC003811

    Article  Google Scholar 

  • Leger, J.M., Loriers-Susse, C., Vodar, B.: Pressure effect on the curie temperatures of transition metals and alloys. Phys. Rev. B 6(11), 4250–4261 (1972). doi:10.1103/physrevb.6.4250

    Article  ADS  Google Scholar 

  • Lewis, L.H., Mubarok, A., Poirier, E., Bordeaux, N., Manchanda, P., Kashyap, A., Skomski, R., Goldstein, J., Pinkerton, F.E., Mishra, R.K, Kubic, R.C. Jr., Barmak, K.: Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys.: Condens. Matter 26(6), 064213 (2014). doi:10.1088/0953-8984/26/6/064213

    Article  Google Scholar 

  • Li, H., Ebrahimi, F.: Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater. Sci. Eng. A 347(1–2), 93–101 (2003). doi:10.1016/S0921-5093(02)00586-5

    Article  Google Scholar 

  • Li, X., Chiba, A., Takahashi, S.: Preparation and magnetic properties of ultrafine particles of Fe-Ni alloys. J. Magn. Magn. Mater. 170(3), 339–345 (1997). doi:10.1016/S0304-8853(97)00039-5

    Article  ADS  Google Scholar 

  • Liao, Q., Tannenbaum, R., Wang, Z.L.: Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J. Phys. Chem. B 110(29), 14262–14265 (2006). doi:10.1021/jp0625154, 00062

    Article  Google Scholar 

  • McNerny, K., Kim, Y., Laughlin, D., McHenry, M.: Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J. Appl. Phys., p. 09A312 (2010). doi:10.1063/1.3348738

    Article  Google Scholar 

  • Mohamed, M.A., El-Maghraby, A.H., El-Latif, M.M.A., Farag, H.A.: Optimum synthesis conditions of nanometric Fe50Ni50 alloy formed by chemical reduction in aqueous solution. Bull. Mater. Sci. 36(5), 845–852 (2013). doi:10.1007/s12034-013-0539-z

    Article  Google Scholar 

  • Moustafa, S.F., Daoush, W.M.: Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications. J. Mater. Process. Technol. 181(1–3), 59–63 (2007). doi:10.1016/j.jmatprotec.2006.03.008

    Article  Google Scholar 

  • Moys, M.H.: Grinding to nano-sizes: effect of media size and slurry viscosity. Miner. Eng. 74(C), 64–67 (2015)

    Article  Google Scholar 

  • Muxworthy, A.R., Williams, W.: Critical single-domain grain sizes in elongated iron particles: implications for meteoritic and lunar magnetism. Geophys. J. Int. 202(1), 578–583 (2015)

    Article  ADS  Google Scholar 

  • Nagata, T.: Meteorite magnetization and paleointensity. Adv. Space Res. 2(12), 55–63 (1983). doi:10.1016/0273-1177(82)90288-5

    Article  ADS  Google Scholar 

  • Néel, M.L.: Théorie du trainage magnétique des ferromagnétiques au grains fin avec applications aux terres cuites. Ann. Géophys. 5(2), 99–136 (1949)

    Google Scholar 

  • Néel, M.L.: Some theoretical aspects of rock-magnetism. Adv. Phys. 4(14), 191–243 (1955)

    Article  ADS  Google Scholar 

  • Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., Dautreppe, D.: Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. J. Appl. Phys. 35(3), 873–876 (1964). doi:10.1063/1.1713516

    Article  ADS  Google Scholar 

  • Patrick, L.: The change of ferromagnetic curie points with hydrostatic pressure. Phys. Rev. 93(3), 384–392 (1954). doi:10.1103/physrev.93.384

    Article  ADS  Google Scholar 

  • Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  Google Scholar 

  • Santos, E.D., Gattacceca, J., Rochette, P., Fillion, G., Scorzelli, R.: Kinetics of tetrataenite disordering. J. Magn. Magn. Mater. 375, 234–241 (2015). doi:10.1016/j.jmmm.2014.09.051

    Article  ADS  Google Scholar 

  • Scorzelli, R.B., Silva, E.G., Kaito, C., Saito, Y., McElfresh, M., Elmassalami, M.: Mössbauer spectroscopy, X-ray diffraction and magnetic measurements of iron–nickel ultrafine particles. Hyperfine Interact. 94(1), 2337–2342 (1994). doi:10.1007/BF02063785

    Article  Google Scholar 

  • Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 240(826), 599–642 (1948). doi:10.1098/rsta.1948.0007

    Article  ADS  MATH  Google Scholar 

  • Suryanarayana, C.: Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2001)

    Article  Google Scholar 

  • Swartzendruber, L.J., Itkin, V.P., Alcock, C.B.: The Fe–Ni (iron–nickel) system. J. Phase Equilib. 12(3), 288–312 (1991)

    Article  Google Scholar 

  • Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y.: the structure of iron in earth’s inner core. Science 330(6002), 359–361 (2010). doi:10.1126/science.1194662

    Article  ADS  Google Scholar 

  • Uehara, M., Nakamura, N.: Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines. Earth Planet. Sci. Lett. 250(1–2), 292–305 (2006)

    Article  ADS  Google Scholar 

  • Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., van der Beek, C.J.: Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306(3–4), 241–252 (2011). doi:10.1016/j.epsl.2011.04.008

    Article  ADS  Google Scholar 

  • Van de Moortèle, B., Reynard, B., Rochette, P., Jackson, M.J., Beck, P., Gillet, P., McMillan, P.F., McCammon, C.: Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites. Earth Planet. Sci. Lett. 262(1–2), 37–49 (2007)

    ADS  Google Scholar 

  • Viau, G., Fiévet-Vincent, F., Fiévet, F.: Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 84(3), 259–270 (1996). doi:10.1016/0167-2738(96)00005-7

    Article  Google Scholar 

  • Vitta, S., Khuntia, A., Ravikumar, G., Bahadur, D.: Electrical and magnetic properties of nanocrystalline Fe100xNix alloys. J. Magn. Magn. Mater. 320(3–4), 182–189 (2008). doi:10.1016/j.jmmm.2007.05.021

    Article  ADS  Google Scholar 

  • Wasilewski, P.: Magnetization of small iron–nickel spheres. Phys. Earth Planet Inter. 26(1–2), 149–161 (1981). doi:10.1016/0031-9201(81)90106-0

    Article  ADS  Google Scholar 

  • Wasilewski, P.: Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Phys. Earth Planet. Inter. 52(1), 150–158 (1988)

    Article  ADS  Google Scholar 

  • Wei, Q., Gilder, S.A., Maier, B.: Pressure dependence on the remanent magnetization of Fe–Ni alloys and Ni metal. Phys. Rev. B 90(14) (2014). doi:10.1103/physrevb.90.144425

    Google Scholar 

  • Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Meteorites and the Early Solar System II. University of Arizona Press, Tucson, pp. 19–52 (2006)

    Google Scholar 

  • Weiss, B.P., Fong, L.E., Vali, H., Lima, E.A., Baudenbacher, F.J.: Paleointensity of the ancient martian magnetic field. Geophys. Res. Lett. 35(23) (2008) doi:10.1029/2008gl035585

    Google Scholar 

  • Weiss, B.P., Gattacceca, J., Stanley, S., Rochette, P., Christensen, U.R.: Paleomagnetic records of meteorites and early planetesimal differentiation. Space Sci. Rev. 152(1–4), 341–390 (2010). doi:10.1007/s11214-009-9580-z

    Article  ADS  Google Scholar 

  • Wood, J.A.: Chondrites: their metallic minerals, thermal histories, and parent planets. Icarus 6(1–3), 1–49 (1967)

    Article  ADS  Google Scholar 

  • Wood, B.J., Walter, M.J., Wade, J.: Accretion of the Earth and segregation of its core. Nature 441(7095), 825–833 (2006)

    Article  ADS  Google Scholar 

  • Wu, H., Qian, C., Cao, Y., Cao, P., Li, W., Zhang, X., Wei, X.: Synthesis and magnetic properties of size-controlled FeNi alloy nanoparticles attached on multiwalled carbon nanotubes. J. Phys. Chem. Solids 71(3), 290–295 (2010). doi:10.1016/j.jpcs.2009.12.079

    Article  ADS  Google Scholar 

  • Xu, J., Mao, H., Hemley, R.J., Hines, E.: The moissanite anvil cell: a new tool for high-pressure research. J. Phys.: Condens. Matter 14(44), 11543 (2002)

    ADS  Google Scholar 

  • Yang, C.W., Williams, D.B., Goldstein, J.I.: A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteorit. Planet. Sci. 32(3), 423–429 (1997). doi:10.1111/j.1945–5100.1997.tb01285.x

    Google Scholar 

  • Yang, J., Goldstein, J.I., Scott, E.R.D.: Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446(7138), 888–891 (2007). doi:10.1038/nature05735

    Article  ADS  Google Scholar 

  • Yue, M., Wang, Y.P., Poudyal, N., Rong, C.B., Liu, J.P.: Preparation of Nd–Fe–B nanoparticles by surfactant-assisted ball milling technique. J. Appl. Phys. 105(7), 07A708 (2009)

    Article  Google Scholar 

  • Zhang, X., Zhang, H., Wu, T., Li, Z., Zhang, Z., Sun, H.: Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J. Magn. Magn. Mater. 331, 162–167 (2013). doi:10.1016/j.jmmm.2012.11.033

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding was provided through the Deutsche Forschungsgemeinschaft (DFG) projects WA 3402/1-1 and GI712/7-1. We thank Martin Leberer and Johannes Heinbuch for assistance in the laboratory and Bernd Maier for supplying X-ray data. FRITSCH GmbH provided technical support for the ball mill. A review by Jérôme Gattacceca helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wack, M., Volk, M., Wei, Q. (2018). Magnetic Properties of the Iron–Nickel System: Pressure, Composition, and Grain Size. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_14

Download citation

Publish with us

Policies and ethics