Skip to main content
Log in

Finger-Actuated Microfluidic Platform for Colorimetric Isothermal Diagnostics of Neisseria meningitidis and Herpes Simplex Virus

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: The 2020 pandemic showed a need for quick, accessible, and user-friendly diagnostic tests to detect various pathogens applicable at the point-of-care (POC) or at home. Such diagnostics should require a minimum of steps and equipment. Results and Discussion: In this study, we have manufactured and modified a one-way valve system for the microfluidic platform and integrate it to the device for DNA extraction and loop-mediated isothermal amplification (LAMP) with a color readout which allowed rapid and effective diagnosis of Neisseria meningitidis (N. meningitidis) and herpes simplex virus (HSV) without the use of expensive equipment. The article describes the aspects of the manufacturing process and a possible presentation of the platform. Conclusions: This article presents a solution of integrating of embedded flexible films with ion-dependent colorimetric visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Shrirao, A.B., Fritz, Z., Novik, E.M., Yarmush, G.M., Schloss, R.S., Zahn, J.D., and Yarmush, M.L., Technology (Singap. World Sci.), 2018, vol. 6, no. 1, pp. 1–23. https://doi.org/10.1142/S2339547818300019

  2. Ma, J., Yan, S., Miao, C., Li, L., Shi, W., Liu, X., Luo, Y., Liu, T., Lin, B., Wu, W., and Lu, Y., Adv. Healthc. Mater., 2019, vol. 8, no. 1. https://doi.org/10.1002/adhm.201801084

  3. Mahler, L., Wink, K., Beulig, R.J., Scherlach, K., Tovar, M., Zang, E., Martin, K., Hertweck, C., Belder, D., and Roth, M., Sci. Rep., 2018, vol. 8, p. 113087. https://doi.org/10.1038/s41598-018-31263-2

  4. Li, Z., Zhao, J., Wu, X., Zhu, C., Liu, Y., Wang, A., Deng, G., and Zhu, L., Biotech. Biotech. Equip., 2019, vol. 33, pp. 223–230. https://doi.org/10.1080/13102818.2018.1561211

    Article  CAS  Google Scholar 

  5. Wang, H., Ma, Z., Qin, J., Shen, Z., Liu, Q., Chen, X., Wang, H., An, Zh., Liu, W., and Li, M., Biosens. Bioelectron., 2019, vol. 126, pp. 373–380. https://doi.org/10.1016/j.bios.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  6. Liu, P. and Mathies, R.A., Trends Biotechnol., 2009, vol. 27, no. 10, pp. 572–581. https://doi.org/10.1016/j.tibtech.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  7. Oshiki, M., Miura, T., Kazama, S., Segawa, T., Ishii, S., Hatamoto, M., Yamaguchi, T., Kubota, K., Iguchi, A., Tagawa, T., Okubo, T., Shigeki, U., Harada, H., Kobayashi, N., Araki, N., and Sano, D., Front. Microbiol., 2018, vol. 9, p. 830. https://doi.org/10.3389/fmicb.2018.00830

    Article  PubMed  PubMed Central  Google Scholar 

  8. Convery, N. and Gadegaard, N., Micro Nano Eng., 2019, vol. 2, pp. 76–91. https://doi.org/10.1016/j.mne.2019.01.003

    Article  Google Scholar 

  9. Fruncillo, S., Su, X., Liu, H., and Wong, L.S., ACS Sens., 2021, vol. 6, no. 6, pp. 2002–2024 https://doi.org/10.1021/acssensors.0c02704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grimes, A., Breslauer, D.N., Long, M., Pegan, J., Lee, L.P., and Khine, M., Lab. Chip., 2007, vol. 8, pp. 170–172. https://doi.org/10.1039/B711622E

    Article  PubMed  Google Scholar 

  11. Comeford, K., Elliott, S., Nivers, S., Ryan, E., and Liu, Y., Application and Design of Acrylic Microfluidic Chips. Digital WPI. https://digital.wpi.edu/downloads/b8515q04v

  12. Trantidou, T., Elani, Y., Parsons, E., and Ces, O., Microsyst. Nanoeng., 2017, vol. 3, p. 16091. https://doi.org/10.1038/micronano.2016.91

  13. Qi, Z.B., Xu, L., Xu, Y., Zhong, J., Abedini, A., Cheng, X., and Sinton, D., Lab. Chip., 2018, vol. 18, pp. 3872–3880. https://doi.org/10.1039/C8LC01109E

    Article  CAS  PubMed  Google Scholar 

  14. Strong, E.B., Schultz, S.A., Martinez, A.W., and Martinez, N.W., Sci. Rep., 2019, vol. 9, p. 7. https://doi.org/10.1038/s41598-018-37029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E.M., Rowell, C., and Cooper, J.M., PNAS, 2019, vol. 116, no. 11, pp. 4834–4842. https://doi.org/10.1073/pnas.1812296116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gale, B.K., Jafek, A.R., Lambert, C.J., Goenner, B.L., Moghimifam, H., Nze, U.C., and Kamarapu, S.K., Inventions, 2018, vol. 3, no. 3, p. 60. https://doi.org/10.3390/inventions3030060

    Article  Google Scholar 

  17. Kiss, M.M., Ortoleva-Donnelly, L., Beer, N.R., Warner, J., Bailey, C.G., Colston, B.W., Rothberg, J.M., Link, D.R., and Leamon, J.H., Anal. Chem., 2008, vol. 80, no. 23, pp. 8975–8981. https://doi.org/10.1021/ac801276c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeon, J.S., Chung, S., Kamm, R.D., and Charest, J.L., Biomed. Microdevic., 2011, vol. 13, no. 2, pp. 325–333. https://doi.org/10.1007/s10544-010-9496-0

    Article  Google Scholar 

  19. Kistrup, K., Poulsen, C.E., Hansen, M.F., and Wolff, A., Lab. Chip., 2015, vol. 15, pp. 1998–2001. https://doi.org/10.1039/C5LC00174A

    Article  CAS  PubMed  Google Scholar 

  20. Tornow, M., Arinaga, K., and Rant, U., Electrical Manipulation of DNA on Metal Surfaces. in NanoBioTechnology, Shoseyov, O. and Levy, I., Eds., New Jersey: Humana Press, 2008, pp. 187–214 https://doi.org/10.1007/978-1-59745-218-2_9

  21. Lui, C., Cady, N.C., and Batt, C.A., Sensors, 2009, vol. 9, no. 5, pp. 3713–3744. https://doi.org/10.3390/s90503713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrmann, M., Veres, T., and Tabrizian, M., Lab. Chip., 2006, vol. 6, pp. 555–560. https://doi.org/10.1039/B516031F

    Article  CAS  PubMed  Google Scholar 

  23. Ahrberg, C.D., Manz, A., and Chung, B.G., Lab. Chip., 2016, vol. 16, pp. 3866–3884. https://doi.org/10.1039/C6LC00984K

    Article  CAS  PubMed  Google Scholar 

  24. Mahjoob, S., Vafai, K., and Beer, N.R., Int. J. Heat. Mass Transf., 2008, vol. 51, pp. 2109–2122. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.014

    Article  CAS  Google Scholar 

  25. Dudley, D.M., Newman, C.M., Weiler, A.M., Ramuta, M.D., Shortreed, C.G., Heffron, A.S., Accola, M.A., Rehrauer, W.M., Friedrich, T.C., and O’Connor, D.H., PloS One, 2020, vol. 15, no. 12, p. e0244882. https://doi.org/10.1371/journal.pone.0244882

  26. WHO, Meningitis. https://www.who.int/health-topics/meningitis

  27. Kumar, A., Bhutta, B.S., and Mendez, M.D., Herpes Simplex Encephalitis, 2024. https://www.ncbi.nlm.nih.gov/books/NBK557643/

  28. Goto, M., Honda, E., Ogura, A., Nomoto, A., and Hanaki, K., BioTechniq., 2009, vol. 46, no. 3, pp. 167–172. https://doi.org/10.2144/000113072

    Article  CAS  Google Scholar 

  29. Nguyen, H.Q., Nguyen, V.D., Van Nguyen, H., and Seo, T.S., Sci. Rep, 2020, vol. 10, no. 1, p. 15123. https://doi.org/10.1038/s41598-020-72095-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, R.Y., Zhang, K.X., Zhao, M.Q., Liu, Y.H., Xu, Y.Y., Ju, C.M., Li, B., and Chen, J.-D., J. Microbiol. Met., 2009, vol. 78, no. 3, pp. 339–343. https://doi.org/10.1016/j.mimet.2009.07.006

    Article  CAS  Google Scholar 

  31. Iwamoto, T., Sonobe, T., and Hayashi, K., J. Clin. Microbiol., 2003, vol. 41, no. 6, pp. 2616–2622. https://doi.org/10.1128/JCM.41.6.2616-2622.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quyen, T.L., Ngo, T.A., Bang, D.D., Madsen, M., and Wolff, A., Front. Microbiol., 2019, vol. 10, p. 2234. https://doi.org/10.3389/fmicb.2019.02234

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, K., Park, S.W., and Yang, S.S., BioChip. J., 2010, vol. 4, pp. 148–154. https://doi.org/10.1007/s13206-010-4210-0

    Article  CAS  Google Scholar 

  34. Park, J. and Park, J.K., Lab. Chip., 2018, vol. 18, pp. 1215–1222. https://doi.org/10.1039/C7LC01128H

    Article  CAS  PubMed  Google Scholar 

  35. Iwai, K., Shih, K.C., Lin, X., Brubaker, T.A., Sochol, R.D., and Lin, L., Lab. Chip., 2014, vol. 14, pp. 3790–3799. https://doi.org/10.1039/C4LC00500G

    Article  CAS  PubMed  Google Scholar 

  36. Sergeeva, E.Y., Bugakova, D.S., Anastasova, E.Y., and Vinogradov, A.V., Patent RU no. 2778345C2.

  37. Gong, M.M., MacDonald, B.D., Vu Nguyen, T., and Sinton, D., Biomicrofluid., 2012, vol. 6, p. 044102. https://doi.org/10.1063/1.4762851

    Article  CAS  Google Scholar 

  38. Yao, L., Liu, B., Chen, T., Liu, S., and Zuo, T., Biomed. Microdevic., 2005, vol. 7, no. 3, pp. 253–257. https://doi.org/10.1007/s10544-005-3999-0

    Article  CAS  Google Scholar 

  39. Oh, S., Kang, T., Kim, H., Moon, J., Hong, S., and Yi, J., J. Membrane Sci., 2007, vol. 301, nos. 1–2, pp. 118–125. https://doi.org/10.1016/j.memsci.2007.06.006

    Article  CAS  Google Scholar 

  40. Jin, Z., Ding, G., Li, G., Yang, G., Han, Y., Hao, N., Deng, J., Zhang, Y., Zhang, W., and Li, W., J. Chem. Technol. Biotechnol., 2020, vol. 95, pp. 1460–1466. https://doi.org/10.1002/jctb.6331

    Article  CAS  Google Scholar 

  41. Pang, B., Ding, X., Wang, G., Zhao, C., Xu, Y., Fu, Y., Sun, J., Song, X., Wu, W., Liu, Yu., Song, Q., Hu, J., Li, J., and Mu, J., J. Agricul. Food Chem., 2017, vol. 65, no. 51, pp. 11312–11319. https://doi.org/10.1021/acs.jafc.7b03655

    Article  CAS  Google Scholar 

  42. Guo, Z., Yu, T., He, J., Liu, F., Hao, H., Zhao, Y., Wen, J., and Wang, Q., Mol. Cell Prob., 2015, vol. 29, no. 4, pp. 223–227. https://doi.org/10.1016/j.mcp.2015.05.005

    Article  CAS  Google Scholar 

  43. Sriworarat, C., Phumee, A., Mungthin, M., Leelayoova, S., and Siriyasatien, P., Parasites Vector., 2015, vol. 8, p. 591. https://doi.org/10.1186/s13071-015-1202-x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledge Aleksandr V. Slita for providing the viral culture and Ekaterina V. Nikitina for providing the bacterial culture. Authors also would like to thank Anton Bukatin and Landysh Fatkhutdinova for help with microfluidics. Daria S. Bugakova and Aleksandr V. Vinogradov made a priceless impact for this project.

Funding

L. Shkodenko and M. Rubel were supported by Russian Scientific Foundation grant No. 22-75-10073.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the article.

Corresponding author

Correspondence to M. S. Rubel.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkodenko, L.A., Laushkina, V.O., Rubel, M.S. et al. Finger-Actuated Microfluidic Platform for Colorimetric Isothermal Diagnostics of Neisseria meningitidis and Herpes Simplex Virus. Russ J Bioorg Chem 50, 544–553 (2024). https://doi.org/10.1134/S106816202411044X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202411044X

Keywords:

Navigation