Skip to main content
Log in

Hybrid Antimicrobial Coating Based on Conjugate of Hyaluronic Acid with LL-37 Peptide for PEO-Modified Titanium Implants

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Synthesis of a novel conjugate of hyaluronic acid (HA) and the antimicrobial peptide LL-37 and evaluation of its antibacterial activity as an organic coating for titanium implants. Methods: The hybrid molecule HA–LL-37 was prepared by the Michael reaction of HA-SH and the N-maleimide derivative of LL-37. The hybrid compound has been tested as an antimicrobial organic coating for titanium samples with an inorganic sub-layer created by plasma electrolytic oxidization (PEO) of the surface. Results and Discussion: The in vitro studies have demonstrated the antibacterial effect of the hybrid molecule within the inorganic PEO coating, i.e., a significant (p <0.05) suppression of the ability of Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecium, and Escherichia coli to form biofilms. Conclusions: The presented approach can be utilized for the subsequent design and development of non-fouling antimicrobial coatings of implants to decrease the risk of bacteria-induced diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Elias, C.N., Lima, J.H.C., Valiev, R., and Meyers, M.A., JOM, 2008, vol. 60, pp. 46–49. https://doi.org/10.1007/s11837-008-0031-1

    Article  CAS  Google Scholar 

  2. Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., Prog. Mater. Sci., 2009, vol. 54, pp. 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  3. Chen, Q. and Thouas, G.A., Mater. Sci. Eng. R Rep., 2015, vol. 87, pp. 1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  4. Franz, S., Rammelt, S., Scharnweber, D., and Simon, J.C., Biomaterials, 2011, vol. 32, pp. 6692–709. https://doi.org/10.1016/j.biomaterials.2011.05.078

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, G. and Groth, T., Macromol. Biosci., 2018, vol. 18, p. 1800112. https://doi.org/10.1002/mabi.201800112

    Article  CAS  Google Scholar 

  6. Meyers, S.R. and Grinstaff, M.W., Chem. Rev., 2012, vol. 112, pp. 1615–1632. https://doi.org/10.1021/cr2000916

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, B.G.X., Myers, D.E., Wallace, G.G., Brandt, M., and Choong, P.F.M., Int. J. Mol. Sci., 2014, vol. 15, p. 11878. https://doi.org/10.3390/ijms150711878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, A., Tsoi, J.K.H., Rodrigues, F.P., Leprince, J.G., and Palin, W.M., Int. J. Adhesion Adhesives, 2016, vol. 69, pp. 58–71. https://doi.org/10.1016/j.ijadhadh.2016.03.022

    Article  CAS  Google Scholar 

  9. Chouirfa, H., Bouloussa, H., Migonney, V., and Falentin-Daudré, C., Acta Biomater., 2019, vol. 83, pp. 37–54. https://doi.org/10.1016/j.actbio.2018.10.036

    Article  CAS  PubMed  Google Scholar 

  10. Rice, L.B., J. Infect. Dis., 2008, vol. 197, p. 1079. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  11. Pringle, N.A., Dube, A., Adam, R.Z., D’Souza, S., and Aucamp, M., Materials, 2021, vol. 14, p. 3167. https://doi.org/10.3390/ma14123167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, J., Dou, X., Song, J., Lyu, Y., Zhu, X., Xu, L., Li, W., and Shan, A., Med. Res. Rev., 2019, vol. 39, pp. 831–859. https://doi.org/10.1002/med.21542

    Article  CAS  PubMed  Google Scholar 

  13. Mahlapuu, M., Håkansson, J., Ringstad, L., and Björn, C., Front. Cell. Infect. Microbiol., 2016, vol. 6, p. 194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riool, M., de Breij, A., Drijfhout, J.W., Nibbering, P.H., and Zaat, S.A.J., Front. Chem., 2017, vol. 5, p. 63. https://doi.org/10.3389/fchem.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Costa, B., Martínez-de-Tejada, G., Gomes, P.A.C., Martins, M.C.L., and Costa, F., Pharmaceutics, 2021, vol. 13, p. 1918. https://doi.org/10.3390/pharmaceutics13111918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mookherjee, N., Brown, K.L., Bowdish, D.M.E., Doria, S., Falsafi, R., Hokamp, K., Roche, F.M., Mu, R., Doho, G.H., Pistolic, J., Powers, J.-P., Bryan, J., Brinkman, F.S.L., and Hancock, R.E.W., J. Immunol., 2006, vol. 176, pp. 2455–2464. https://doi.org/10.4049/jimmunol.176.4.2455

    Article  CAS  PubMed  Google Scholar 

  17. Duplantier, A.J. and van Hoek, M.L., Front. Immunol., 2013, vol. 4, p. 143. https://doi.org/10.3389/fimmu.2013.00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neshani, A., Zare, H., Eidgahi, M.R.A., Kakhki, R.K., Safdari, H., Khaledi, A., and Ghazvini, K., Gene Rep., 2019, vol. 17, p. 100519. https://doi.org/10.1016/j.genrep.2019.100519

    Article  Google Scholar 

  19. Gabriel, M., Nazmi, K., Veerman, E.C., Amerongen, A.V.N., and Zentner, A., Bioconjug. Chem., 2006, vol. 17, pp. 548–550. https://doi.org/10.1021/bc050091v

    Article  CAS  PubMed  Google Scholar 

  20. He, Y., Mu, C., Shen, X., Yuan, Z., Liu, J., Chen, W., Lin, Ch., Tao, B., Liu, B., and Cai, K., Acta Biomater., 2018, vol. 80, pp. 412–424. https://doi.org/10.1016/j.actbio.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  21. Parfenova, L.V., Galimshina, Z.R., Gil’fanova, G.U., Alibaeva, E.I., Danilko, K.V., Pashkova, T.M., Kartashova, O.L., Farrakhov, R.G., Mukaeva, V.R., Parfenov, E.V., Nagumothu, R., and Valiev, R.Z., Surf. Interfaces, 2022, vol. 28, p. 101678. https://doi.org/10.1016/j.surfin.2021.101678

    Article  CAS  Google Scholar 

  22. Volpi, N., Schiller, J., Stern, R., and Soltés, L., Curr. Med. Chem., 2009, vol. 16, pp. 1718–1745. https://doi.org/10.2174/092986709788186138

    Article  CAS  PubMed  Google Scholar 

  23. Brubaker, C.E. and Messersmith, Ph.B., Langmuir, 2012, vol. 28, pp. 2200–2205. https://doi.org/10.1021/la300044v

    Article  CAS  PubMed  Google Scholar 

  24. Schante, C., Zuber, G., and Vandamme, Th., Carbohyd. Pol., 2011, vol. 85, pp. 469–489. https://doi.org/10.1016/j.carbpol.2011.03.019

    Article  CAS  Google Scholar 

  25. Bastow, E.R., Byers, S., Golub, S.B., Clarkin, C.E., Pitsillides, A.A., and Fosang, A.J., J. Cell. Mol. Life Sci., 2008, vol. 65, pp. 395–413. https://doi.org/10.1007/s00018-007-7360-z

    Article  CAS  Google Scholar 

  26. Day, A.J. and de la Motte, C.A., Trends Immunol., 2005, vol. 26, pp. 637–643. https://doi.org/10.1016/j.it.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  27. Stern, R., Asari, A.A., and Sugahara, K.N., Eur. J. Cell. Biol., 2006, vol. 85, pp. 699–715. https://doi.org/10.1016/j.ejcb.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Parfenov, E.V., Parfenova, L.V., Dyakonov, G.S., Danilko, K.V., Mukaeva, V.R., Farrakhov, R.G., Lukina, E.S., and Valiev, R.Z., Surf. Coatings Technol., 2019, vol. 357, pp. 669–683. https://doi.org/10.1016/j.surfcoat.2018.10.068

    Article  CAS  Google Scholar 

  29. Parfenova, L.V., Lukina, E.S., Galimshina, Z.R., Gil’fanova, G.U., Mukaeva, V.R., Farrakhov, R.G., Danilko, K.V., Dyakonov, G.S., and Parfenov, E.V., Molecules, 2020, vol. 25, p. 229. https://doi.org/10.3390/molecules25010229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parfenov, E.V., Parfenova, L.V., Mukaeva, V.R., Farrakhov, R.G., Stotskiy, A., Raab, A., Danilko, K.V., Nagumothu, R., and Valiev, R.Z., Surf. Coatings Technol., 2020, vol. 404, p. 126486. https://doi.org/10.1016/j.surfcoat.2020.126486

    Article  CAS  Google Scholar 

  31. Pouyani, T. and Prestwich, G.D., Bioconjug. Chem., 1994, vol. 5, p. 339. https://doi.org/10.1021/bc00028a010

    Article  CAS  PubMed  Google Scholar 

  32. Varghese, O.P., Sun, W., Hilborn, J., and Ossipov, D.A., J. Am. Chem. Soc., 2009, vol. 131, p. 8781. https://doi.org/10.1021/ja902857b

    Article  CAS  PubMed  Google Scholar 

  33. Vercruysse, K.P., Marecak, D.M., Marecek, J.F., and Prestwich, G.D., Bioconjug. Chem., 1997, vol. 8, pp. 686–694. https://doi.org/10.1021/bc9701095

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Neoh, K.-G., Shi, Z., Kang, E.-T., Poh, C., and Wang, W., Biomaterials, 2010, vol. 31, p. 8854. https://doi.org/10.1016/j.biomaterials.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  35. Chua, P.H., Neoh, K.G., Shi, Z., and Kang, E.T., Biomed. Mater. Res. A, 2008, vol. 87A, pp. 1061–1074. https://doi.org/10.1002/jbm.a.31854

    Article  CAS  Google Scholar 

  36. Lv, H., Chen, Z., Yang, X., Cen, L., Zhang, X., and Gao, P., J. Dent., 2014, vol. 42, pp. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  37. Shu, X.Z., Liu, Y., Luo, Y., Roberts, M.C., and Prestwich, G.D., Biomacromolecules, 2002, vol. 3, pp. 1304– 1311. https://doi.org/10.1021/bm025603c

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen, О. and Buchardt, O., Synthesis, 1991, vol. 10, pp. 819–821. https://doi.org/10.1055/s-1991-26579

    Article  Google Scholar 

  39. Gunderov, D.V., Polyakov, A.V., Semenova, I.P., Raab, G.I., Churakova, A.A., Gimaltdinova, E.I., Sabirov, I., Segurado, J., Sitdikov, V.D., Alexandrov, I.V., Enikeev, N.A., and Valiev, R.Z., Mater. Sci. Eng. A, 2013, vol. 562, pp. 128– 136.

    Article  CAS  Google Scholar 

  40. Dyakonov, G.S., Zemtsova, E., Mironov, S., Semenova, I.P., Valiev, R.Z., and Semiatin, S.L., Mater. Sci. Eng. A, 2015, vol. 648, pp. 305–310.

    Article  CAS  Google Scholar 

  41. O’Toole, G., Kaplan, H.B., and Kolter, R., Ann. Rev. Microbiol., 2000, vol. 54, pp. 49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Structural studies were performed at the Regional Center for Collective Use “Agidel” of the Ufa Federal Research Center of the Russian Academy of Sciences.

Funding

The work was supported by State Assignment of the Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center of the Russian Academy of Sciences (no. FMRS-2022-0081).

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to the writing of the article.

Corresponding author

Correspondence to L. V. Parfenova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parfenova, L.V., Galimshina, Z.R., Gil’fanova, G.U. et al. Hybrid Antimicrobial Coating Based on Conjugate of Hyaluronic Acid with LL-37 Peptide for PEO-Modified Titanium Implants. Russ J Bioorg Chem 50, 500–507 (2024). https://doi.org/10.1134/S1068162024020225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020225

Keywords:

Navigation