Skip to main content
Log in

Borneol Induced Hepatotoxicity via Caspase-3 and Oxidative Stress Pathwaysin in Zebrafish

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Borneol is a widely used Chinese medicine, and borneol extracted from plants or synthesized are the two major types of borneol applied in clinical therapy. In this study, the hepatotoxicity of natural and synthetic borneol in both larval and adult zebrafish was detected. Methods: Adult fish and larval were exposed to borneol. Results: Synthetic borneol induced more obvious developmental toxicity, such as morphological deformity, delay of yolk sac absorption, disappearance of swim bladder, loose hepatic tissue, irregular cells, cell vacuolation and decline in cell count; treatment with synthetic borneol caused more severe oxidative stress, as changes in the activities of CAT and SOD and accumulation of ROS and MDA are more notable; synthetic borneol could disrupt lipid and glycogen metabolism more seriously possibly due to the more notable expression changes of metabolismrelated genes (ide, sirt4, dgat1b, and mgst1); synthetic borneol possibly produced hepatic injury by inducing cell apoptosis. Discussion: Our results suggest synthetic borneol has greater potential to cause hepatotoxicity compare to natural borneol. Conclusions: SB showed higher developmental toxicity than NB in larval zebrafish. Exposure to SB disordered the liver’s lipid and glycogen metabolism caused by liver injury in higher concentration groups These findings have implications for understanding the mechanism of the hepatotoxicity caused by borneol, and provide a scientific basis for the drug safety of borneol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Guo, S.Y., Zhu, X.Y., Liao, W.H., and Li, C.Q., Exp. Animal Sci., 2016, vol. 33, pp. 21–27. https://doi.org/10.3969/j.issn.1006-6179.2016.05.004

    Article  CAS  Google Scholar 

  2. Liu, Y., Zhong, Q.X., Qiu, H.H., Wang, G., Wang, C.C., Feng, L., and Jia, X.B., China J. Chinese Mat. Medica, 2017, vol. 42, pp. 3044–3048. https://doi.org/10.19540/j.cnki.cjcmm.20170714.011

    Article  Google Scholar 

  3. Yoshioka, H., Usuda, H., Fujii, H., and Nonogaki, T., Environ Health Prev. Med., 2017, vol. 22, p. 54. https://doi.org/10.1186/s12199-017-0662-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y., Zhang, B.L., and Hu, L.M., Tianjin J. Tradit. Chinese Med., 2003, vol. 20, pp. 85–87. https://doi.org/10.3969/j.issn.1672-1519.2003.04.046

    Article  Google Scholar 

  5. Zhang, R., Mi, S.Q., and Wang, N.S., Eur. J. Drug Metab. Pharmacokinet, 2013, vol. 38, pp. 159–169. https://doi.org/10.1007/s13318-013-0125-1

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J.Y., Wang, J.J., Meng, M.R., and Chen, Y., Acta Pharm. Sinica, 2015, vol. 50, pp. 459–463. https://doi.org/10.16438/j.0513-4870.2015.04.004

    Article  Google Scholar 

  7. Zhan, H.W., Liu, H.B., Ye, X.J., Wang, J., and Fang, S.W., Mod. Drug Appl., 2012, vol. 6, pp. 1–3. https://doi.org/10.14164/j.cnki.cn11-5581/r.2012.22.012

    Article  Google Scholar 

  8. Wu, C., Liao, Q., Yao, M., Xu, X., Zhou, Y., Hou, X., and Xie, Z., Eur. J. Drug Metab. Pharmacokinet., 2014, vol. 39, pp. 17–24. https://doi.org/10.1007/s13318-013-0135-z

    Article  CAS  PubMed  Google Scholar 

  9. He, X.J., Lv, Q.J., and Liu, Y.L., West China J. Pharm. Sci., 2006, vol. 21, pp. 523–526. https://doi.org/10.13375/j.cnki.wcjps.2006.06.005

    Article  CAS  Google Scholar 

  10. Huang, P., Jiang, X.F., Zou, J.L., Yuan, Y.M., and Yao, M.C., World Sci. Technol. Modern. Tradit. Chinese Med. Mat. Med., 2009, vol. 11, pp. 821–827. https://doi.org/10.3969/j.issn.1674-3849.2009.06.012

    Article  Google Scholar 

  11. Saravanakumar, M., Manivannan, J., Sivasubramanian, J., Silambarasan, T., Balamurugan, E., and Raja, B., Mol. Cell Biochem., 2012, vol. 362, pp. 203–209. https://doi.org/10.1007/s11010-011-1143-4

    Article  CAS  PubMed  Google Scholar 

  12. Yin, Y., Cao, L., Ge, H., Duanmu, W., Tan, L., Yuan, J., Tunan, C., Li, F., Hu, R., Gao, F., and Feng, H., Neuroreport, 2017, vol. 28, pp. 506–513. https://doi.org/10.1097/WNR.0000000000000792

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, B.S. and Liu, Q.D., Tradit. Chinese Drug Res. Clin. Pharmacol., 2002, vol. 13, pp. 287–288. https://doi.org/10.19378/j.issn.1003-9783.2002.05.007

    Article  Google Scholar 

  14. Chen, Y.J., Pu, Y.Z., Yan, H., Zhong, Y.X., Wang, Z., Li, C.J., Zha, X.D., Zhao, B.Q., and Liu, P., China Pharmacy, 2014, vol. 25, pp. 1733–1737. https://doi.org/10.6039/j.issn.1001-0408.2014.19.02

    Article  Google Scholar 

  15. Hu, L.M., Jiang, M., Ling, S., Fan, G.W., Gao, X.M., and Zhang, B.L., J. Toxicology, 2006, vol. 20, pp. 275–276. https://doi.org/10.16421/j.cnki.1002-3127.2006.04.030

    Article  Google Scholar 

  16. Jia, K., Cheng, B., Huang, L., Xiao, J., Bai, Z., Liao, X., Cao, Z., Shen, T., Zhang, C., Hu, C., and Lu, H., Chemosphere, vol. 248, p. 125941. https://doi.org/10.1016/j.chemosphere.2020.125941

  17. Jin, Y., Liu, Z., Peng, T., and Fu, Z., Fish Shellfish Immunol., 2015, vol. 43, pp. 405–414.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z., Fu, Z., and Jin, Y., Chemosphere, 2017, vol. 166, pp. 212–220. https://doi.org/10.1016/j.chemosphere.2016.09.100

    Article  CAS  PubMed  Google Scholar 

  19. Tilton, F.A., Bammler, T.K., and Gallagher, E.P., Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2011, vol. 153, pp. 9–16. https://doi.org/10.1016/j.cbpc.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., Dai, D., Yu, Y., Yang, G., Shen, W., Wang, Q., Weng, H., and Zhao, X., J. Hazardous Mat., 2018, vol. 352, pp. 80–91. https://doi.org/10.1016/j.jhazmat.2018.03.023

    Article  CAS  Google Scholar 

  21. Glaberman, S., Padilla, S., and Barron, M.G., Environ. Toxicol. Chem., 2017, vol. 36, pp. 1221–1226. https://doi.org/10.1002/etc.3641

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, C., Sun, H., Xie, P., Wang, J., Zhang, G., Chen, N., Yan, W., and Li, G., Aquat. Toxicol., 2014, vol. 149, pp. 25–32. https://doi.org/10.1016/j.aquatox.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, G.C., Yang, S.H., and Feng, X.J., West China J. Pharm. Sci., 1990, vol. 5, pp. 190–191. https://doi.org/10.13375/j.cnki.wcjps.1990.03.023

    Article  Google Scholar 

  24. Oliveira, R., Grisolia, C.K., Monteiro, M.S., Soares, A.M., and Domingues, I., Comparative Biochem. Physiol. Part C: Toxicol. Pharmacol., 2016, vol. 187, pp. 50–61. https://doi.org/10.1016/j.cbpc.2016.04.004

    Article  CAS  Google Scholar 

  25. Pamanji, R., Yashwanth, B., Bethu, M.S., Leelavathi, S., Ravinder, K., and Rao, J.V., Environ. Toxicol. Pharmacol., 2015, vol. 39, pp. 887–897. https://doi.org/10.1016/j.etap.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  26. Patricia, M., John Wiley and Sons, Inc., Hoboken, 2011, Ch. 8, pp. 12–14. https://doi.org/10.1002/9781118102138

  27. Rajaraman, G., Wang, G.Q., Yan, J., Jiang, P., Gong, Y., and Burczynski, F.J., Mol. Cell Biochem., 2007, vol. 295, pp. 27–34. https://doi.org/10.1007/s11010-006-9268-6

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson, M.E., Kubota, A., Timme-Laragy, A.R., Woodin, B., and Stegeman, J.J., Toxicol. Appl. Pharmacol., 2012, vol. 265, pp. 166–174. https://doi.org/10.1016/j.taap.2012.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, X.S., jiang, X., Ding, G.H., Ma, X.L., Qi, Z.X., and Xiong, D.Q., Asian J. Ecotoxicol., 2017, vol. 12, pp. 281–290. https://doi.org/10.1007/s00128-018-2413-6

    Article  CAS  Google Scholar 

  30. Ahmed, M.K., Habibullah-Al-Mamun, M., Parvin, E., Akter, M.S., and Khan, M.S., Exp. Toxicol. Pathol., 2013, vol. 65, pp. 903–909. https://doi.org/10.1016/j.etp.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  31. Al-Bairuty, G.A., Shaw, B.J., Handy, R.D., and Henry, T.B., Aquat. Toxicol., 2013, vol. 126, pp. 104–115. https://doi.org/10.1016/j.aquatox.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  32. Ameur, W.B., El Megdiche, Y., de Lapuente, J., Barhoumi, B., Trabelsi, S., Ennaceur, S., Camps, L., Serret, J., Ramos-Lopez, D., Gonzalez-Linares, J., Touil, S., Driss, M.R., and Borras, M., Chemosphere, 2015, vol. 135, pp. 67–74. https://doi.org/10.1016/j.chemosphere.2015.02.050

    Article  CAS  PubMed  Google Scholar 

  33. Devi, G.P., Ahmed, K.B., Varsha, M.K., Shrijha, B.S., Lal, K.K., Anbazhagan, V., and Thiagarajan, R., Aquat. Toxicol., 2015, vol. 158, pp. 149–156. https://doi.org/10.1016/j.aquatox.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Jones, A., Trends Plant Sci., 2000, vol. 5, pp. 225–230. https://doi.org/10.1016/s1360-1385(00)01605-8

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H.B., Xia, Y., Wang, P.F., Lv, W.P., and Chen, Y.L., World Latest Med. Inf., 2017, vol. 17, pp. 66–68. https://doi.org/10.3969/j.issn.1671-3141.2017.34.032

    Article  Google Scholar 

  36. Cui, Y., Liu, W., Xie, W., Yu, W., Wang, C., and Chen, H., Int. J. Environ Res. Public Health, 2015, vol. 12, pp. 15673–15682. https://doi.org/10.3390/ijerph121215012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, L., Zhao, Q.F., Jin, K.X., Zhu, S.Q., Wang, X.F., and Lu, J.Y., Huan Jing Sci., 2015, vol. 36, pp. 3884–3891. https://doi.org/10.13227/j.hjkx.2015.10.044

    Article  CAS  Google Scholar 

  38. Okal, A., Mossalam, M., Matissek, K.J., Dixon, A.S., Moos, P.J., and Lim, C.S., Mol. Pharm., 2013, vol. 10, pp. 3922–3933. https://doi.org/10.1021/mp400379c

    Article  CAS  PubMed  Google Scholar 

  39. Liu, L., Jiang, C., Wu, Z.Q., Gong, Y.X., and Wang, G.X., Ecotoxicol. Environ Saf., 2013, vol. 98, pp. 297–302. https://doi.org/10.1016/j.ecoenv.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  40. Tang, C., Chai, X., Kang, F., Huang, X., Hou, T., Tang, F., and Li, J., Mediat. Inflamm., 2015, vol. 2015, Article ID: 965925. https://doi.org/10.1155/2015/965925

  41. Feng, M., Qu, R., Wang, C., Wang, L., and Wang, Z., Aquat. Toxicol., 2013, vol. 140–141, pp. 314–323. https://doi.org/10.1016/j.aquatox.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  42. Lushchak, V.I., Aquat. Toxicol., 2011, vol. 101, pp. 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  43. Krapivner, S., Iglesias, M.J., Silveira, A., Tegner, J., Bjorkegren, J., Hamsten, A., and van’t Hooft, F.M., Arterioscler Thromb. Vasc. Biol., 2010, vol. 30, pp. 962–967. https://doi.org/10.1161/ATVBAHA.109.201426

    Article  CAS  PubMed  Google Scholar 

  44. Lu, X., Huang, Y., Liu, Y., Wu, X., and Shi, X., Metabolism, 2009, vol. 58, pp. 1465–1469. https://doi.org/10.1016/j.metabol.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  45. Ufer, C., Wang, C.C., Borchert, A., Heydeck, D., and Kuhn, H., Antioxid. Redox. Signal, 2010, vol. 13, pp. 833–875. https://doi.org/10.1089/ars.2009.3044

    Article  CAS  PubMed  Google Scholar 

  46. Qiu, L., Jia, K., Huang, L., Liao, X., Guo, X., and Lu, H., Chemosphere, 2019, vol. 232, pp. 171–179. https://doi.org/10.1016/j.chemosphere.2019.05.159

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Y., Wang, J., Wei, Y., Zhang, H., Xu, M., and Dai, J., Aquat. Toxicol., 2008, vol. 89, pp. 242–250. https://doi.org/10.1016/j.aquatox.2008.07.009

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank for Jun Zhou (Jiangxi Linke Longnao Co., LTD) for providing free the borneol.

Funding

This work was supported by the Key Science and technology Projects of Ji’an city (no. 20211-055455), Jinggangshan University Local Service Project (nos. JFD1804 and JFD1904).

Author information

Authors and Affiliations

Authors

Contributions

The authors XL and KJ writing original draft, methodology, formal analysis, editing, and funding acquisition. The author LH—formal analysis, methodology. The author ZC— validation, methodology. The author HL—validation, methodology, supervision, and funding acquisition.

All authors participated in the discussions.

Corresponding author

Correspondence to Huiqiang Lu.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Jia, K., Huang, L. et al. Borneol Induced Hepatotoxicity via Caspase-3 and Oxidative Stress Pathwaysin in Zebrafish. Russ J Bioorg Chem 50, 508–521 (2024). https://doi.org/10.1134/S1068162024020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020080

Keywords:

Navigation