Skip to main content
Log in

Role of cytosolic liver fatty acid binding protein in hepatocellular oxidative stress: effect of dexamethasone and clofibrate treatment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The presence of cysteine and methionine groups together with an ability to bind long-chain fatty acid (LCFA) oxidation products makes liver fatty acid binding protein (L-FABP) an attractive candidate against hepatocellular oxidative stress. In this report, we show that pharmacological treatment directed at modulating L-FABP level affected hepatocellular oxidant status. L-FABP expressing 1548-hepatoma cells, treated with dexamethasone or clofibrate, decreased and increased intracellular L-FABP levels, respectively. Oxidative stress was induced by H2O2 incubation or hypoxia–reoxygenation. The fluorescent marker, dichlorofluorescein (DCF), was employed to measure intracellular reactive oxygen species (ROS). Hepatocellular damage was assessed by lactate dehydrogenase (LDH) level. Dexamethasone treatment resulted in a significant increase in DCF fluorescence with higher LDH release compared to control cells. Clofibrate treatment, however, resulted in a significant decrease in both parameters (< 0.05). Drug treatments did not affect cytosolic activites of glutathione peroxidase (GPx), superoxide dismutase (SOD), or catalase suggesting that the differences between treated and control cells may likely be associated with varying L-FABP levels. We conclude that L-FABP may act as an effective endogenous cytoprotectant against hepatocellular oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luxon BA, Milliano MT, Weisiger RA (2000) Induction of hepatic cytosolic fatty acid binding protein with clofibrate accelerates both membrane and cytoplasmic transport of palmitate Biochim Biophys Acta 1487: 309–318

    PubMed  CAS  Google Scholar 

  2. Murphy EJ (1998) L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L cells Am J Physiol 275: G244–G249

    PubMed  CAS  Google Scholar 

  3. Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E, Bader M, Schroeder F, Binas B (2003) Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene J Biol Chem 278: 21429–21438

    Article  PubMed  CAS  Google Scholar 

  4. Weisiger RA, Zucker SD (2002) Transfer of fatty acids between intracellular membranes: roles of soluble binding proteins, distance, and time Am J Physiol Gastrointest Liver Physiol 282: G105–G115

    PubMed  CAS  Google Scholar 

  5. Thumser AE, Voysey JE, Wilton DC (1994) The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin Biochem J 301: 801–806

    PubMed  CAS  Google Scholar 

  6. Khan SH, Sorof S (1990) Preferential binding of growth inhibitory prostaglandins by the target protein of a carcinogen Proc Natl Acad Sci USA 87: 9401–9405

    Article  PubMed  CAS  Google Scholar 

  7. Woodford JK, Behnke WD, Schroeder F (1995) Liver fatty acid binding protein enhances sterol transfer by membrane interaction Mol Cell Biochem 152: 51–62

    PubMed  CAS  Google Scholar 

  8. Kaikaus RM, Bass NM, Ockner RK (1990) Functions of fatty acid binding proteins Experientia 46: 617–630

    Article  PubMed  CAS  Google Scholar 

  9. Thompson J, Winter N, Terwey D, Bratt J, Banaszak L (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates J Biol Chem 272: 7140–7150

    Article  PubMed  CAS  Google Scholar 

  10. Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation Arch Biochem Biophys 319: 1–9

    Article  PubMed  CAS  Google Scholar 

  11. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins Proc Natl Acad Sci USA 93: 15036–15040

    Article  PubMed  CAS  Google Scholar 

  12. Ek-Von Mentzer BA, Zhang F, Hamilton JA (2001) Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation J Biol Chem 276: 15575–15580

    Article  PubMed  CAS  Google Scholar 

  13. Raza H, Pongubala JR, Sorof S (1989) Specific high affinity binding of lipoxygenase metabolites of arachidonic acid by liver fatty acid binding protein Biochem Biophys Res Commun 161: 448–455

    Article  PubMed  CAS  Google Scholar 

  14. Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, Burczynski FJ (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells Hepatology 42: 871–879

    Article  PubMed  CAS  Google Scholar 

  15. Wang G, Chen QM, Minuk GY, Gong Y, Burczynski FJ (2004) Enhanced expression of cytosolic fatty acid binding protein and fatty acid uptake during liver regeneration in rats Mol Cell Biochem 262: 41–49

    Article  PubMed  CAS  Google Scholar 

  16. Rajaraman G, Burczynski FJ (2004) Effect of dexamethasone, 2-bromopalmitate and clofibrate on L-FABP mediated hepatoma proliferation J Pharm Pharmacol 56: 1155–1161

    PubMed  CAS  Google Scholar 

  17. Swift LM, Sarvazyan N (2000) Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress Am J Physiol Heart Circ Physiol 278: H982–H990

    PubMed  CAS  Google Scholar 

  18. Hasinoff BB (2002) Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia–reoxygenation damage Cardiovasc Toxicol 2: 111–118

    Article  PubMed  CAS  Google Scholar 

  19. Barnabe N, Zastre JA, Venkataram S, Hasinoff BB (2002) Deferiprone protects against doxorubicin-induced myocyte cytotoxicity Free Radic Biol Med 33: 266–275

    Article  PubMed  CAS  Google Scholar 

  20. Tollefson KE, Kroczynski J, Cutaia MV (2003) Time-dependent interactions of oxidant-sensitive fluoroprobes with inhibitors of cellular metabolism Lab Invest 83: 367–375

    PubMed  CAS  Google Scholar 

  21. Oberley LW, Spitz DR (1985) Nitroblue Tetrazolium. In: Greenwald RA (eds) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 217–220

    Google Scholar 

  22. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver Biochem Biophys Res Commun 71: 952–958

    Article  PubMed  CAS  Google Scholar 

  23. Beers RF, Sizer IW: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase J Biol Chem 195, 1952

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  25. Subramaniam R, Fan XJ, Scivittaro V, Yang J, Ha CE, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM (2002) Cellular oxidant stress and advanced glycation endproducts of albumin: caveats of the dichlorofluorescein assay Arch Biochem Biophys 400: 15–25

    Article  PubMed  CAS  Google Scholar 

  26. Chan L, Wei CF, Li WH, Yang CY, Ratner P, Pownall H, Gotto AM Jr., Smith LC (1985) Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications J Biol Chem 260: 2629–2632

    PubMed  CAS  Google Scholar 

  27. Gordon JI, Alpers DH, Ockner RK, Strauss AW (1983) The nucleotide sequence of rat liver fatty acid binding protein mRNA J Biol Chem 258: 3356–3363

    PubMed  CAS  Google Scholar 

  28. Stadtman ER (2004) Cyclic oxidation and reduction of methionine residues of proteins in antioxidant defense and cellular regulation Arch Biochem Biophys 423: 2–5

    Article  PubMed  CAS  Google Scholar 

  29. Vougier S, Mary J, Friguet B (2003) Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells Biochem J 373: 531–537

    Article  PubMed  CAS  Google Scholar 

  30. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation Biochem J 324(Pt 1): 1–18

    PubMed  CAS  Google Scholar 

  31. Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB Jr. (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes J Biol Chem 269: 25010–25015

    PubMed  CAS  Google Scholar 

  32. Manautou JE, Silva VM, Hennig GE, Whiteley HE (1998) Repeated dosing with the peroxisome proliferator clofibrate decreases the toxicity of model hepatotoxic agents in male mice Toxicology 127: 1–10

    Article  PubMed  CAS  Google Scholar 

  33. Nicholls-Grzemski FA, Belling GB, Priestly BG, Calder IC, Burcham PC (2000) Clofibrate pretreatment in mice confers resistance against hepatic lipid peroxidation J Biochem Mol Toxicol 14: 335–345

    Article  PubMed  CAS  Google Scholar 

  34. Mehendale HM (2000) PPAR-alpha: a key to the mechanism of hepatoprotection by clofibrate Toxicol Sci 57: 187–190

    Article  PubMed  CAS  Google Scholar 

  35. Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE (2000) Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure Toxicol Sci 57: 338–344

    Article  PubMed  CAS  Google Scholar 

  36. Vanden Heuvel JP (1999) Peroxisome proliferator-activated receptors (PPARS) and carcinogenesis Toxicol Sci 47: 1–8

    Article  PubMed  CAS  Google Scholar 

  37. Foucaud L, Niot I, Kanda T and Besnard P: Indirect dexamethasone down-regulation of the liver fatty acid-binding protein expression in rat liver. Biochim Biophys Acta 1391: 204–212, 1998

    Google Scholar 

  38. Lawrence JW, Wollenberg GK, Frank JD, DeLuca JG (2001) Dexamethasone selectively inhibits WY14,643-induced cell proliferation and not peroxisome proliferation in mice Toxicol Appl Pharmacol 170: 113–123

    Article  PubMed  CAS  Google Scholar 

  39. Lawrence JW, Wollenberg GK, DeLuca JG (2001) Tumor necrosis factor alpha is not required for WY14,643-induced cell proliferation Carcinogenesis 22: 381–386

    Article  PubMed  CAS  Google Scholar 

  40. Sorof S (1994) Modulation of mitogenesis by liver fatty acid binding protein Cancer Metastasis Rev 13: 317–336

    Article  PubMed  CAS  Google Scholar 

  41. Fridovich I (1983) Superoxide radical: an endogenous toxicant Annu Rev Pharmacol Toxicol 23: 239–257

    Article  PubMed  CAS  Google Scholar 

  42. Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue Arterioscler Thromb Vasc Biol 22: 1761–1768

    Article  PubMed  Google Scholar 

  43. Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA (2002) Covalent modification of epithelial fatty acid-binding protein by 4-hydroxynonenal in vitro and in vivo. Evidence for a role in antioxidant biology J Biol Chem 277: 50693–50702

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an operating grant from the Canadian Institute of Health Research. G. Rajaraman gratefully acknowledges support of a University of Manitoba Fellowship Award and the Leslie Buggey Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Burczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaraman, G., Wang, G.Q., Yan, J. et al. Role of cytosolic liver fatty acid binding protein in hepatocellular oxidative stress: effect of dexamethasone and clofibrate treatment. Mol Cell Biochem 295, 27–34 (2007). https://doi.org/10.1007/s11010-006-9268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9268-6

Key words:

Navigation