Skip to main content
Log in

Synthesis, Biological Evaluation, Molecular Docking, and Molecular Dynamic Simulation Studies of Some New 5-(3,4,5-Trimethoxybenzyl)pyrimidine-2,4-diamine (Trimethoprim) Derivatives via Modified Mannich-Type Reaction

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: This article is focused on synthesis and characterisation of 1,1-(((5-(3,4,5triethoxybenzyl)pyrimidine-2,4-diyl))bis(azanediyl))bis(substituted phenyl methylene))bis(naphthalen-2-ol) moieties and evaluated for antibacterial and antioxidant activities as well as molecular docking and molecular dynamic simulation investigations. Methods: In this article we conducted one-pot three component reactions through Betti type reaction. Agar diffusion method was used to evaluate anti-bacterial properties. The DPPH method was used to determine antioxidant activity results. Results: A series of 1,1-(((5-(3,4,5triethoxybenzyl)-pyrimidine-2,4-diyl))bis(azanediyl))bis(substituted phenyl methylene))bis(naphthalen-2-ol) were synthesized via Betti type reaction and evaluated for their antibacterial and antioxidant activities. Further, all the synthesized compounds were characterized by FT-IR, 1H, and 13C NMR, and mass spectral analysis. Discussion: Molecular docking was carried out to study possible potential binding interaction of synthesized Betti base derivatives with 1NC6 PDB as receptor. The molecular dynamic (MD) was performed to investigate stability of binding interaction of drug-target (protein–ligand) complex. All the synthesized compounds were investigated for their antibacterial and antioxidant activity. Conclusions: Betti base derivatives were synthesized and studied on the basis of computer aided drug design including docking and molecular dynamic (MD) simulations and pharmacologically assessed for antioxidant and antibacterial activity. Molecular docking investigation revealed that compounds showed better binding energies in the range –4.1 to –7.3 kcal/mol suggests that the binding occurs efficiently in the receptor–ligand complex. These Betti base derivatives were synthesized via Betti base protocol at 70oC through one-pot three component reaction with acceptable yields, as cost efficient, high yield, easy workup and environmental friendliness. Afterwards, obtained molecules have characterized by FT-IR, NMR, and Mass spectra which confirms the chemical structure of the synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Karmakar, B. and Banerji, J., Tetrahedron Lett., 2011, vol. 52, pp. 4957–4960. https://doi.org/10.1016/j.tetlet.2011.07.075

    Article  CAS  Google Scholar 

  2. Ugi, I., Werner, B., and Domling, A., Molecules, 2003, vol. 8, pp. 53–66. https://doi.org/10.3390/80100053

    Article  CAS  PubMed Central  Google Scholar 

  3. Betti, M., Org. Synth. Coll., 1941, vol. 1, pp. 381–384.

    Google Scholar 

  4. Martinek, A., Tetrahedron, 2003, vol. 59, pp. 2877–2884. https://doi.org/10.1016/S0040-4020(03)

    Article  Google Scholar 

  5. Periasamy, M., Reddy, M.N., and Anwar, S., Tetrahedron Assymmet., 2004, vol. 15, pp. 1809–1812. https://doi.org/10.1016/j.tetasy.2004.04.030

    Article  CAS  Google Scholar 

  6. Mohanram, I. and Meshram, J., ISRN Org. Chem., 2014, vol. 2014, Article ID: 639392. https://doi.org/10.1155/2014/639392

  7. Monsouri, S.G., Z-Boeini, H., Zomorodian, K., Khalvati, B., Pargali, R.H., Dehsharhi, A., Rudbari, H.A., Sahihi, M., and Chavoshpour, Z., Arab. J. Chem., 2020, vol. 13, pp. 1271–1282. https://doi.org/10.1016/j.arabjc.2017.10.009

    Article  CAS  Google Scholar 

  8. Mallamaci, R., Annunziata, M., Capozzi, M., and Cosimocardellicchio, C., J. Appl. Sci., 2022, vol. 12, Article ID: 7779. https://doi.org/10.3390/app12157779

  9. Alamdar, S.S., Foroughifar, N., Shahi, M., and Balali, E., J. Polycycl. Aromat. Compd., 2022, vol. 43, pp. 4354–4370. https://doi.org/10.1080/10406638.2022.2089700

    Article  CAS  Google Scholar 

  10. Elkolli, M., Chafai, N., Chafaa, S., Kadi, I., Bensuoici, C., and Hellal, A., J. Mol. Strut., 2022, vol. 1268, Artilce ID: 133701. https://doi.org/10.1016/j.molstruc.2022.133701

  11. Amitha, G.S., Rajan, V.K., Amritha, B., Murraleedharan, K., and Vasudevan, S., J. Photochem. Photobiol. A: Chem., 2019, vol. 382, Article ID: 111904. https://doi.org/10.1016/j.photochem.2019.111904

  12. Cardellichio, C., Ciccarella, G., Naso, F., Perna, F., and Totorella, P., Tetrahedron, 1999, vol. 55, pp. 14685–14692. https://doi.org/10.1016/S0040-4020(99)00914-X

    Article  Google Scholar 

  13. Olyaei, A., Zarnegar, M., Sadeghpour, M., and Rezaei, M., Lett. Org. Chem., 2012, vol. 9, pp. 451–456. https://doi.org/10.2174/157017812801322499

    Article  CAS  Google Scholar 

  14. Saidi, M.R., Azizi, N., and Jamal, M.R.N., Tetrahedron. Lett., 2001, vol. 82, pp. 8111–8113. https://doi.org/10.1016/S0040-4039(01)01732-4

    Article  Google Scholar 

  15. Zolfigol, M.A., Ayazi-Nasrabadi, R., Baghery, S., Khakyazadeh, V., and Azizian, S., J. Mol. Catal. A: Chem., 2016, vol. 418–419, pp. 54–67. https://doi.org/10.1016/j.molcata.2016.03.027

    Article  CAS  Google Scholar 

  16. Shwetha, N.D., Onkar, A.L., Ramana, M.M.V., and Shrimant, V.R., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 874–881. https://doi.org/10.1134/S1068162021040075

    Article  Google Scholar 

  17. Ryhkov, F.V., Elison, M., Ryzhkova, Y.E., Vereshchagin, A.N., Fakhrutdinov, A.N., and Egorov, M.P., Chem. Heterocycl. Comp., 2021, vol. 57, pp. 672–678.

    Article  Google Scholar 

  18. Rashid, U., Ahmad, W., Hassan, S.F., Quresh, N.A., Niaz, B., Muhammad, B. Imdad, S., and Sajid, M., Bioorg. Med. Chem. Lett., 2016, vol. 1, pp. 5749–5753. https://doi.org/10.1016/j.bmcl.2016.10.051

    Article  CAS  Google Scholar 

  19. Abed, R.R., Mohammed, A.S., and Ahmed, F., Res. J. Pharm. Technol., 2021, vol. 14, pp. 4963–4968. https://doi.org/10.52711/0974-360X.2021.00863

    Article  Google Scholar 

  20. Raauf, A.M.R., Al-Smaism, R.F., Thejeel, K.A., and Rasheed, H.A.M., Nat. Prod., 2019, vol. 33, pp. 1277–1283. https://doi.org/10.1080/14786419.2018.1470516

    Article  CAS  Google Scholar 

  21. Nagaraja, O., Bodke, Y.D., Pushpavathi, I., and Ravi Kumar, S., Heliyon, 2020, vol. 6, Article ID: e044245. https://doi.org/10.1016/j.heliyon.2020.e04245

  22. Nithya, P. and Madhavi, C., J. Taibah Univ. SCI, 2017, vol. 11, pp. 40–45. https://doi.org/10.1016/j.jtusci.2014.11.007

    Article  Google Scholar 

  23. Vikram, V., Penumutchu, S.R., Vanakayala, R., Thangudu, S., Amperayani, K.R., and Parimi, U., J. Chem. Sci., 2020, vol. 132, Article ID: 126. https://doi.org/10.1007/s12039-020-01834-W

  24. Kim. J.S., J. Food Sci., 2005, vol. 70, pp. C208–C213. https://doi.org/10.1111/j.1365-2621.2005.tb07127.x

  25. Escobedo, A.A., Topal, B., Kunze, M.B.A., Aranda, J., Chiesa, G., Mungianu, D., Seisdedos, G.B., Eftekharzadeh, B., Gairi, M., Pierattelli, R., Felli, I. C., Diercks, T., Millet, O., García, J., Orozco, M., Crehuet, R., Lindorff-Larsen, K., and Salvatella, X., Nat. Commun., 2019, vol. 10, Article ID: 2034. https://doi.org/10.1038/s41467-019-09923-2

  26. Quiñonero, D., Frontera, A., Garau, C., Ballester, P., Costa, A., and Deya, P.M.J., Chem. Phys. Chem., 2006, vol. 7, pp. 2487–2491. https://doi.org/10.1002/cphc.200600343

    Article  CAS  PubMed  Google Scholar 

  27. Pirkle, W.H. and Liu, Y., J. Chromatogr. A, 1996, vol. 749, pp. 19–24. https://doi.org/10.1016/0021-9673(96)00467-0

    Article  CAS  Google Scholar 

  28. Poornima, C.S. and Dean, P.M., J. Comput. Aided Mol. Des., 1995, vol. 9, pp. 500–512. https://doi.org/10.1007/BF00124321

    Article  CAS  PubMed  Google Scholar 

  29. Rahydu, S.V., Karmakar, D., and Kumar, P., Chem. Data Collect., 2021, vol. 33, Article ID: 100709. https://doi.org/10.1016/j.cdc.2021.100709

  30. Blois, M.S., Nature, 1958, vol. 181, pp. 1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  31. Varpe, B.D. and Jadhav, S.B., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 372–379. https://doi.org/10.1134/S1068162022020030

    Article  Google Scholar 

  32. Lakshmithendral, K., Saravanan, K., Elacheran, R., Archana, K., Manikandan, N., Arjun, H.A., Ramanathan, M., Lokanath, N.K., and Kabilan, S., Eur. J. Med. Chem., 2019, vol. 168, pp. 1–10. https://doi.org/10.1016/j.ejmech.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  33. Elancheran, R., Saravanan, K., and Choudhury, B., Med. Chem. Res., 2016, vol. 25, pp. 539–552. https://doi.org/10.1007/s00044-016-1504-3

    Article  CAS  Google Scholar 

  34. Nagaraja, O., Bodke, Y.D., Kenchappa, R., and Kumar, S.R., Chem. Data Collect., 2021, vol. 33, p. 100713. https://doi.org/10.1016/j.cdc2020100369

    Article  Google Scholar 

  35. Venkatesh, T., Bodke, Y.D., Nagaraj, K., and Ravikumar, S., J. Med. Chem., 2018, vol. 8, pp. 1–7. https://doi.org/10.4172/2161.0444.100488

    Article  Google Scholar 

  36. Arjun, H.A., Rajan, R.K., Elacheran, R., Ramanathan, M., Bhattacharjee, A., and Kabilan, S., Chem. Data Collect., 2020, vol. 26, Article ID: 100350. https://doi.org/10.1016/j.cdc.2020.100350

  37. Pollastri, M.P., Curr. Protoc. Pharmacol., 2010, vol. 49, pp. 9.12.1–9.12.8. https://doi.org/10.1002/0471141755.ph0912s49

    Article  Google Scholar 

  38. Hospital, A., Goni, J.R., Orozco, M., and Gelpi, J., J. Adv. Appl. Bioinform. Chem., 2015, vol. 8, pp. 37–47. https://doi.org/10.2147/AABC.S70333

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Chairman of Department of Industrial Chemistry at Kuvempu University in Shankaraghatta for providing laboratory facilities, as well as the University of Mysore and Mangalore for providing spectral data.

Funding

This work was supported by Sc/St cell Kuvempu University, Shankaraghatta, Shimoga, and no, additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to the writing of the article.

Corresponding author

Correspondence to Itte Pushpavathi.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, Pushpavathi, I., Pasha, K.M.M. et al. Synthesis, Biological Evaluation, Molecular Docking, and Molecular Dynamic Simulation Studies of Some New 5-(3,4,5-Trimethoxybenzyl)pyrimidine-2,4-diamine (Trimethoprim) Derivatives via Modified Mannich-Type Reaction. Russ J Bioorg Chem 50, 485–499 (2024). https://doi.org/10.1134/S1068162024020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020079

Keywords:

Navigation