Skip to main content
Log in

Synthesis and Anti-Mycobacterium Activity of Some New N-Rich Heterocyclic Derivatives and Their Molecular Docking, and DFT Studies

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Synthesis of N-rich heterocyclic derivatives; anti-TB activity, molecular docking, ADME-T, and computational studies. Methods: Synthesis was carried out by conventional method; structures of synthesised was confirmed by different spectroscopic methods; evaluation of anti-TB activity was done by Microplate Alamar Blue assay (MABA); Molecular docking was analyzed by using ChemBioDraw tool (part of the ChemBioOffice Ultra 14.0 suite) and ADME was done by web programme Swiss ADME; DFT studies was carried out by DFT (B3LYP) with the aid of the 6-311++G(d,p) basis set in the Gaussian 09 software. Results: The activity results showed that compounds (IIIc) and (IIIe) demonstrated outstanding activity with MIC values of 1.6 μg/mL, which are closer to the reference standards of rifampicin and streptomycin, while the remaining compounds had reduced efficacy. Discussion: These results show that activity affected by the pyrimidine core and indole moiety of (IIIc) and (IIIe) showed very effective efficacy compared to the reference standards, respectively. Conclusions: Based on the anti-TB activity findings, in-silico molecular docking and ADME profiles, our synthesized drugs followed all five criteria, including high GI absorption, no blood-brain barrier, and minimal skin permeability. Compounds (IIIa) and (IIIb) demonstrated a smaller energy gap in the DFT analysis, indicating that it is chemically more reactive than other compounds. As a result, these compounds demonstrated increased anti-TB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Kerru, N., Bhaskaruni, S.V., Gummidi, L., Maddila, S.N., Maddila, S., and Jonnalagadda, S.B., Synth. Commun., 2019, vol. 49, pp. 2437­–2459. https://doi.org/10.1039/d0ob00350f

    Article  CAS  Google Scholar 

  2. Arora, P., Arora, V., Lamb, H., and Wadhwa, D., Int. J. Pharma Sci. Res., 2012, vol. 3, pp. 2947–2954. https://doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54

    Article  Google Scholar 

  3. Karan, R., Bhatia, R., and Rawal, R.K., Solid State Synth. Method., 2021, pp. 159–188. https://doi.org/10.1016/B978-0-12-819720-2.00010-2

  4. Thorat, B.R., Mali, S.N., Wavhal, S.S., Bhagat, D.S., Borade, R.M., Chapolikar, A., and Shinde, P., Comb. Chem. High Throughput. Screen., 2023, vol. 26, pp. 1108–1140. https://doi.org/10.2174/1386207325666220720105845

    Article  CAS  PubMed  Google Scholar 

  5. Venkatesh, T., Upendranath, K., and Nayaka, Y.A., J. Solid State Electrochem., 2021, vol. 25, pp. 1237–1244. https://doi.org/10.1007/s10008-020-04892-9

    Article  CAS  Google Scholar 

  6. Appaturi, J.N., Ratti, R., Phoon, B.L., Batagarawa, S.M., Din, I.U., Selvaraj, M., and Ramalingam, R.J., Dalton Trans., 2021, vol. 50, pp. 4445–4469. https://doi.org/10.1039/D1DT00456E

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, P. and Dwivedi, N., Acc. Chem. Res., 2013, vol. 46, pp. 289–299. https://doi.org/10.1021/ar300135u

    Article  CAS  PubMed  Google Scholar 

  8. Kumari, A., and Singh, R.K., Bioorg. Chem., 2019, vol. 89, Article ID: 103021. https://doi.org/10.1016/j.bioorg.2019.103021

  9. Li, X., Li, He., Huoji, C., Wanqing, W., and Huanfeng, J., J. Org. Chem., 2013, vol. 78, pp. 3636–3646. https://doi.org/10.1021/jo400162d

    Article  CAS  PubMed  Google Scholar 

  10. Santos, C.M., Freitas, M., and Fernandes, E., Eur. J. Med. Chem., 2018, vol. 157, pp. 1460–1479. https://doi.org/10.1016/j.ejmech.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  11. Kalaria, P.N., Karad, S.C., and Raval, D.K., Eur. J. Med. Chem., 2018, vol. 158, pp. 917–936. https://doi.org/10.1016/j.ejmech.2018.08.040

    Article  CAS  PubMed  Google Scholar 

  12. Blakemore, D.C., Castro, L., Churcher, I., Rees, D.C., Thomas, A.W., Wilson, D.M., and Wood, A., Nat. Chem., 2018, vol. 10, pp. 383–394. https://doi.org/10.1038/s41557-018-0021-z

    Article  CAS  PubMed  Google Scholar 

  13. Kerru, N., Singh, P., Koorbanally, N., Raj, R., and Kumar, V., Eur. J. Med. Chem., 2017, vol. 142, pp. 179–212. https://doi.org/10.1016/j.ejmech.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  14. Eftekhari-Sis, B., Zirak, M., and Akbari, A., Chem. Rev., 2013, vol. 113, pp. 2958–3043. https://doi.org/10.1021/cr300176g

    Article  CAS  PubMed  Google Scholar 

  15. Kerru, N., Maddila, S., and Jonnalagadda, S.B., Curr. Org. Chem., 2019, vol. 23, pp. 3154–3190. https://doi.org/10.2174/1385272823666191202105820

    Article  CAS  Google Scholar 

  16. Ju, Y. and Varma, R.S., J. Org. Chem., 2006, vol. 71, pp. 135–141. https://doi.org/10.1021/jo051878h

    Article  CAS  PubMed  Google Scholar 

  17. Zárate-Zárate, D., Aguilar, R., Hernández-Benitez, R.I., Labarrios, E.M., Delgado, F., and Tamariz, J., Tetrahedron, 2015, vol. 71, pp. 6961–6978. https://doi.org/10.1016/j.tet.2015.07.010

    Article  CAS  Google Scholar 

  18. Leeson, P.D. and Springthorpe, B., Nat. Rev. Drug Discov., 2007, vol. 6, pp. 881–890. https://doi.org/10.1038/nrd2445

    Article  CAS  PubMed  Google Scholar 

  19. Husseiny, E.M., Abulkhair, H.S., El-Dydamony, N.M., and Anwer, K.E., Bioorg. Chem., 2023, vol. 133, Article ID: 106397. https://doi.org/10.1016/j.bioorg.2023.106397

  20. Zhang, B. and Studer, A., Chem. Soc. Rev., 2015, vol. 44, pp. 3505–3521. https://doi.org/10.1039/C5CS00083A

    Article  CAS  PubMed  Google Scholar 

  21. Malysheva, S., Kuimov, V., Belovezhets, L., Belogorlova, N., Borovskaya, M., and Borovskii, G., Bioorg. Chem., 2023, vol. 132, Article ID: 106363.

  22. Chaudhari, K., Surana, S., Jain, P., and Patel, H.M., Eur. J. Med. Chem., 2016, vol. 124, pp. 160–185. https://doi.org/10.1016/j.ejmech.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  23. Al-Rooqi, M.M., Mughal, E.U., Raja, Q.A., Obaid, R.J., Sadiq, A., Naeem, N., and Ahmed, S.A., J. Mol. Struct., 2022, vol. 1268, Article ID: 133719. https://doi.org/10.1016/j.molstruc.2022.133719

  24. Akhtar, J., Khan, A.A., Ali, Z., Haider, R., and Yar, M.S., Eur. J. Med. Chem., 2017, vol. 125, pp. 143–189. https://doi.org/10.1016/j.ejmech.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  25. Ma, X., Lv, X., and Zhang, J., Eur. J. Med. Chem., 2018, vol. 143, pp. 449–463. https://doi.org/10.1016/j.ejmech.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  26. Kaur, R., Dahiya, L., and Kumar, M., Eur. J. Med. Chem., 2017, vol. 141, pp. 473–505. https://doi.org/10.1016/j.ejmech.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  27. Patel, R.V., Keum, Y.S., and Park, S.W., Eur. J. Med. Chem., 2015, vol. 97, pp. 649–663. https://doi.org/10.1016/j.ejmech.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, G.M., Camilo Jr, A., and Garcia, J.R., Bioorg. Chem., 2021, vol. 106, Article ID: 104465. https://doi.org/10.1016/j.bioorg.2020.104465

  29. Nibin Joy, M., Bodke, Y.D., Telkar, S., and Bakulev, V.A., J. Mex. Chem., 2020, vol. 64, pp. 53–73. https://doi.org/10.29356/jmcs.v64i1.1116

    Article  CAS  Google Scholar 

  30. Reddy, G.M., and Camilo, Jr, A., Sustain Chem. Pharm., 2020. vol. 17, Article ID: 100303. https://doi.org/10.1016/j.scp.2020.100303

  31. Martins, P., Jesus, J., Santos, S., Raposo, L.R., Roma-Rodrigues, C., Baptista, P.V., and Fernandes, A.R., Molecules, 2015, vol. 20, pp. 16852–16891. https://doi.org/10.3390/molecules200916852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rishikesan, R., Karuvalam, R.P., Muthipeedika, N.J., Sajith, A.M., Eeda, K.R., Pakkath, R., and Muralidharan, A., J. Chem. Sci., 2021, vol. 133, pp. 1–12. https://doi.org/10.1007/s12039-020-01872-4

    Article  CAS  Google Scholar 

  33. Bird, C.W. and Katritzky, A.R., Eds., Pergamon Press, Oxford, 1984, vol. 8.

  34. Young, A.M., Audus, K.L., Proudfoot, J., and Yazdanian, M., J. Pharm. Sci., 2006, vol. 95, pp. 717–725. https://doi.org/10.1002/jps.20526

    Article  CAS  PubMed  Google Scholar 

  35. Wei, C.X., Bian, M., and Gong, G.H., Molecules, 2015, vol. 20, pp. 5528–5553. https://doi.org/10.3390/molecules20045528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thanikachalam, P.V., Maurya, R.K., Garg, V., and Monga, V., Eur. J. Med. Chem., 2019, vol. 180, pp. 562– 612. https://doi.org/10.1016/j.ejmech.2019.07.019

    Article  CAS  PubMed  Google Scholar 

  37. Jhun, B.W., Koh, W.J., An, T.J., Kim, J.W., Choi, E.Y., Jang, S.H., Park, and Y.B., Tuberc. Respir Dis., 2020, vol. 83, pp. 42–50. https://doi.org/10.4046/trd.2019.0065

    Article  Google Scholar 

  38. Khera, M.K., Cliffe, I.A., Mathur, T., and Prakash, O., Bioorg. Med. Chem., 2011, vol. 21, pp. 2887–2889. https://doi.org/10.1016/j.bmcl.2011.03.075

    Article  CAS  Google Scholar 

  39. Salo-Ahen, O.M., Alanko, I., Bhadane, R., Bonvin, A.M., Honorato, R.V., Hossain, S., and Vanmeert, M., Processes, 2020, vol. 9, p. 71. https://doi.org/10.3390/pr9010071

    Article  CAS  Google Scholar 

  40. Kufareva, I. and Abagyan, R., Homol. Modell.: Method. Protocol., 2012, pp. 231–257. https://doi.org/10.1007/978-1-61779-588-6_10

  41. Cabrera-Pérez, M.Á., Nam, N.H., Castillo-Garit, J.A., Rasulev, B., Le-Thi-Thu, H., and Casañola-Martin, G.M., Curr. Top Med. Chem., 2018, vol. 18, pp. 2209–2229. https://doi.org/10.2174/1568026619666181130140350

    Article  CAS  PubMed  Google Scholar 

  42. Honorio, K.M., Moda, T.L., Andricopulo, A.D., Med. Chem., 2013, vol. 9, pp. 163–176. https://doi.org/10.2174/1573406411309020002

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., and Jiang, H., Q. Rev. Biophys., 2015, vol. 48, pp. 488–515. https://doi.org/10.1017/S0033583515000190

    Article  PubMed  Google Scholar 

  44. Gombar, V.K., Silver, I.S., and Zhao, Z., Curr. Top. Med. Chem., 2003, vol. 3, pp. 1205–1225. https://doi.org/10.2174/1568026033452014

    Article  CAS  PubMed  Google Scholar 

  45. Nagaraja, O., Bodke, Y.D., Pushpavathi, I., and Kumar, S.R., Heliyon, 2020, vol. 6, Article ID: e04245. https://doi.org/10.1016/j.heliyon.2020.e04245

  46. Sukanya, S.H., Venkatesh, T., Rao, S.A., and Pandith, A., J. Mol. Struct., 2022, vol. 1267, Article ID: 133587. https://doi.org/10.1016/j.molstruc.2022.133587

  47. Manjunatha, B., Bodke, Y.D., Nagaraja, O., and Navaneethgowda, P.V., New J. Chem., 2022, vol. 46, pp. 5393–5404. https://doi.org/10.1039/D1NJ04751E

    Article  CAS  Google Scholar 

  48. Ahmad, G., Rasool, N., Mubarik, A., Zahoor, A.F., Hashmi, M.A., Zubair, M., and Haider, S., Molecules, 2021, vol. 26, Article ID: 7309. https://doi.org/10.3390/molecules26237309

  49. Naeem, N., Shehzad, R.A., Ans, M., Akhter, M.S., and Iqbal, J., Energy Technol., 2022, vol. 10, Article ID: 2100838. https://doi.org/10.1002/ente.202100838

  50. Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., and Hatamjafari, F., J. Chem. Res., 2021, vol. 45, pp. 147–158. https://doi.org/10.1177/1747519820932091

    Article  CAS  Google Scholar 

  51. Albayati, M.R., Kansız, S., Dege, N., Kaya, S., Marzouki, R., Lgaz, H., and Chung, I.M., J. Mol. Struct., 2020, vol. 1205, Article ID: 127654. https://doi.org/10.1016/j.molstruc.2019.127654

  52. Venkatesh, T., Upendranath, K., and Manjanna, J., Chem. Data Collect., 2022, vol. 40, Article ID: 100886. https://doi.org/10.1016/j.cdc.2022.100886

  53. Nagaraja, O., Bodke, Y.D., Thippeswamy, B., Venkatesh, T., and Manjunatha, B., J. Mol. Struct., 2022, vol. 1269, Article ID: 133759. https://doi.org/10.1016/j.molstruc.2022.133759

  54. Khedr, M.A., Pillay, M., Chandrashekharappa, S., Chopra, D., Aldhubiab, B.E., Attimarad, M., and Venugopala, K.N., J. Biomol. Struct., 2018, vol. 36, pp. 2163–2178. https://doi.org/10.1080/07391102.2017.1345325

    Article  CAS  Google Scholar 

  55. Sukanya, S.H., Venkatesh, T., Kumar, R., and Bodke, Y.D., Chem. Data Collect., 2021, vol. 33, Article ID: 100713. https://doi.org/10.1016/j.cdc.2021.100713

  56. Nagaraja, O., Bodke, Y.D., Kenchappa, R., and Kumar, S.R., Chem. Data Collect., 2020, vol. 27, Article ID: 100369. https://doi.org/10.1016/j.cdc.2020.100369

  57. Venkatesh, T., Bodke, Y.D., Nagaraj, K., and Kumar, S.R., Med. Chem., 2018, vol. 8, Article ID: 1000488. https://doi.org/10.4172/2161-0444.1000488

  58. Kenchappa, R., Bodke, Y.D., Telkar, S., Sindhe, M.A., and Giridhar, M., Russ. J. Gen. Chem., 2016, vol. 86, pp. 2827–2836. https://doi.org/10.1134/S107036321612046X

    Article  CAS  Google Scholar 

  59. Shukla, R. and Tripathi, T., Curr. Comput. Aided Drug Des., 2020, pp. 133–161. https://doi.org/10.1007/978-981-15-6815-2_7

  60. Kumar, Y., Singh, H., and Patel, C.N., J. Infect. Public Health, 2020, vol. 13, pp. 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  61. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, Article ID: 42717. https://doi.org/10.1038/srep42717

  62. Mishra, S. and Dahima, R., J. Drug Deliv., 2019, vol. 9, pp. 366–369. https://doi.org/10.22270/jddt.v9i2-s.2710

    Article  CAS  Google Scholar 

  63. Bhal, S.K., Kassam, K., Peirson, I.G., and Pearl, G.M., Mol. Pharmaceutics., 2007, vol. 4, pp. 556–560. https://doi.org/10.1021/mp0700209

    Article  CAS  Google Scholar 

  64. Maliehe, T.S., Tsilo, P.H., and Shandu, J.S., Pharmacogn. J., 2020, vol. 12, pp. 1357–1362. https://doi.org/10.5530/pj.2020.12.187

    Article  CAS  Google Scholar 

  65. Janakirama Rao, A.S., Mudduraj Urs, V.T., Devanna, J.N., Mahadevappa, P., and Kumaran, R.C., Lett. Drug Des. Discov., 2021, vol. 18, pp. 445–453. https://doi.org/10.2174/1570180817999201104120815

    Article  CAS  Google Scholar 

  66. Sukanya, S.H., Venkatesh, T., Rao, S.A., and Joy, M.N., J. Mol. Struct., 2022, vol. 1247, Article ID: 131324. https://doi.org/10.1016/j.molstruc.2021.131324

  67. Nath, A., Kumer, A., Zaben, F., and Khan, M.W., BJBAS, 2021. vol. 10, pp. 1–13. https://doi.org/10.1186/s43088-021-00117-8

    Article  Google Scholar 

  68. Rashid, M., Bioorg. Chem., 2020, vol. 96, Article ID: 103576. https://doi.org/10.1016/j.bioorg.2020.103576

  69. Matada, M.N., Jathi, K., Malingappa, P., and Pushpavathi, I., Chem. Data Collect., 2020, vol. 25, Article ID: 100314. https://doi.org/10.1016/j.cdc.2019.100314

  70. Maliyappa, M.R., Keshavayya, J., Mahanthappa, M., Shivaraj, Y., and Basavarajappa, K.V., J. Mol. Struct., 2020, vol. 1199, Article ID: 126959. https://doi.org/10.1016/j.molstruc.2019.126959

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Chairman of the Department of Industrial Chemistry at Kuvempu University in Shankaraghatta for providing laboratory facilities, as well as the University of Mysore and Dharwad for providing spectral data.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, investigation, synthesis, DFT studies, writing-original draft, and supervision by authors RH, IP, TV, and NO.

Molecular docking analysis by author RKS.

Corresponding authors

Correspondence to Itte Pushpavathi or Talavara Venkatesh.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, R., Pushpavathi, I., Venkatesh, T. et al. Synthesis and Anti-Mycobacterium Activity of Some New N-Rich Heterocyclic Derivatives and Their Molecular Docking, and DFT Studies. Russ J Bioorg Chem 50, 147–161 (2024). https://doi.org/10.1134/S1068162024010199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010199

Keywords:

Navigation