Skip to main content
Log in

Flavin-Dependent Dehydrogenases and Oxidases: Comparison of Structural Functional Properties (A Review)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Flavin-dependent dehydrogenases and oxidases are enzymes that play an important role in living organisms and are widely used in practice. Despite the different reactivity with respect to oxygen, the similarity of the structures of the active sites of a number of dehydrogenases and oxidases, up to the possibility of interconversion via the substitution of one amino acid, makes it possible to consider these classes as related. The vanillyl-alcohol oxidase family, one of the best-known families of oxidases, too, includes both classes of enzymes. However, in the literature, the relationship between oxidases and dehydrogenases is presented as a comparison of specific representatives of these classes or, more rarely, structural features of individual subclasses. In view of the aforesaid, consideration of the functional properties of oxidases beyond the context of their comparison with dehydrogenases seems to be incomplete. In addition, the search for and study of effectors, electron acceptors and inhibitors of oxidases and dehydrogenases, should be carried out taking account of the similarity of these classes, including the development of drugs that target these enzymes (for example, antitrypanosomal or antifungal drugs). This review analyzes the main structural differences between oxidases and dehydrogenases and considers the practical application of these classes, with particular attention to their role as drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Dijkman, W.P., De Gonzalo, G., Mattevi, A., and Fraaije, M.W., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 5177–5188. https://doi.org/10.1007/s00253-013-4925-7

    Article  CAS  PubMed  Google Scholar 

  2. Martin, C., Binda, C., Fraaije, M.W., and Mattevi, A., Enzymes, 2020, vol. 47, pp. 63–86. https://doi.org/10.1016/bs.enz.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Leferink, N.G.H., Heuts, D.P.H.M., Fraaije, M.W., and van Berkel, W.J.H., Arch. Biochem. Biophys., 2008, vol. 474, pp. 292–301. https://doi.org/10.1016/j.abb.2008.01.027

    Article  CAS  PubMed  Google Scholar 

  4. Leferink, N.G.H., Fraaije, M.W., Joosten, H.J., Schaap, P.J., Mattevi, A., and van Berkel, W.J.H., J. Biol. Chem., 2009, vol. 284, pp. 4392–4397. https://doi.org/10.1074/jbc.M808202200

    Article  CAS  PubMed  Google Scholar 

  5. Nishino, T., Okamoto, K., Eger, B.T., Pai, E.F., and Nishino, T., FEBS J., 2008, vol. 275, pp. 3278–3289. https://doi.org/10.1111/j.1742-4658.2008.06489.x

    Article  CAS  PubMed  Google Scholar 

  6. Varfolomeev, S.D. and Gurevich, K. G., Biokinetika. Prakticheskii kurs (Biokinetics. Practical Course), Moscow: FAIR PRESS, 1999.

  7. Gazaryan, I.G., Schedrina, V., Klyachko, N., Efimov, A., and Brown, A.M., Biochemistry, 2003, vol. 42, pp. 8613–8614.

    Google Scholar 

  8. Klyachko, N.L., Shchedrina, V.A., Efimov, A.V., Kazakov, S.V., Gazaryan, I.G., Kristal, B.S., and Brown, A.M., J. Biol. Chem., 2005, vol. 280, pp. 16106–16114. https://doi.org/10.1074/jbc.M414285200

    Article  CAS  PubMed  Google Scholar 

  9. Gazaryan, I.G., Shchedrina, V.A., Klyachko, N.L., Zakhariants, A.A., Kazakov, S.V., and Brown, A.M., Biochemistry, 2020, vol. 85, pp. 908–919. https://doi.org/10.1134/S0006297920080064

    Article  CAS  PubMed  Google Scholar 

  10. Kudryashova, E.V., Leferink, N.G.H., Slot, I.G.M., and van Berkel, W.J.H., Biochim. Biophys. Acta Proteins Proteomics, 2011, vol. 1814, pp. 545–552. https://doi.org/10.1016/j.bbapap.2011.03.001

    Article  CAS  Google Scholar 

  11. Chudin, A.A. and Kudryashova, E.V., Analytica, 2022, vol. 3, pp. 36–53. https://doi.org/10.3390/analytica3010004

    Article  CAS  Google Scholar 

  12. Atroshenko, D.L., Zarubina, S.A., Shelomov, M.D., Golubev, I.V., Savin, S.S., and Tishkov, V.I., Vestn. Mosk. Univ., Ser. 2: Khim., 2017, vol. 58, pp. 257–263. https://www.chem.msu.su/rus/vmgu/175/abs003.html

    Google Scholar 

  13. Atroshenko, D.L., Golovina, D.I., Sergeev, E.P., Shelomov, M.D., Elcheninov, A.G., Kublanov, I.V., Chubar, T.A., Pometun, A.A., Savin, S.S., and Tishkov, V.I., Act. Nat., 2022, vol. 14, pp. 4–15. https://doi.org/10.32607/actanaturae.11812

    Article  Google Scholar 

  14. Karpova, E.V., Shcherbacheva, E.V., Galushin, A.A., Vokhmyanina, D.V., Karyakina, E.E., and Karyakin, A.A., Anal. Chem., 2019, vol. 91, pp. 3778–3783. https://doi.org/10.1021/acs.analchem.8b05928

    Article  CAS  PubMed  Google Scholar 

  15. Ewing, T.A., Mechanistic Biocatalytic Enzymology of Flavoprotein Oxidases, PhD Thesis, Wageningen: Wageningen Univ., the Netherlands, 2018. https://doi.org/10.18174/447033

  16. Wong, C.M., Wong, K.H., and Chen, X.D., Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 927–938. https://doi.org/10.1007/s00253-008-1407-4

    Article  CAS  PubMed  Google Scholar 

  17. Pollegioni, L., Sacchi, S., and Murtas, G., Front. Mol. Biosci., 2018, vol. 5, pp. 1–14. https://doi.org/10.3389/fmolb.2018.00107

    Article  CAS  Google Scholar 

  18. Pollegioni, L., Piubelli, L., Sacchi, S., Pilone, M.S., and Molla, G., Cell. Mol. Life Sci., 2007, vol. 64, pp. 1373–1394. https://doi.org/10.1007/s00018-007-6558-4

    Article  CAS  PubMed  Google Scholar 

  19. Vishwakarma, A., Tetali, S.D., Selinski, J., Scheibe, R., and Padmasree, K., Ann. Bot., 2015, vol. 116, pp. 555–569. https://doi.org/10.1093/aob/mcv122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rizwan, M., Al Rasheed, H., and Tarjan, G., Arch. Pathol. Lab. Med., 2018, vol. 142, pp. 1564–1570. https://doi.org/10.5858/arpa.2017-0285-RS

    Article  Google Scholar 

  21. Mráček, T., Drahota, Z., and Houštěk, J., Biochim. Biophys. Acta Bioenerg., 2013, vol. 1827, pp. 401–410. https://doi.org/10.1016/j.bbabio.2012.11.014

    Article  CAS  Google Scholar 

  22. Nghi, D.H., Kellner, H., Büttner, E., Huong, L.M., Duy, L.X., Giap, V.D., Quynh, D.T., Hang, T.T.N., Verberckmoes, A., Diels, L., Liers, C., and Hofrichter, M., Appl. Biol. Chem., 2021, vol. 64, p. 66. https://doi.org/10.1186/s13765-021-00637-y

    Article  CAS  Google Scholar 

  23. Roldán, A., Comini, M.A., Crispo, M., and Krauth-Siegel, R.L., Mol. Microbiol., 2011, vol. 81, pp. 623–639. https://doi.org/10.1111/j.1365-2958.2011.07721.x

    Article  CAS  PubMed  Google Scholar 

  24. Tolomeo, M., Nisco, A., Leone, P., and Barile, M., Int. J. Mol. Sci., 2020, vol. 21, pp. 1–32. https://doi.org/10.3390/ijms21155310

    Article  CAS  Google Scholar 

  25. Singh, A., Maqbool, M., Mobashir, M., and Hoda, N., Eur. J. Med. Chem., 2017, vol. 125, pp. 640–651. https://doi.org/10.1016/j.ejmech.2016.09.085

    Article  CAS  PubMed  Google Scholar 

  26. Jabłońska, J. and Tawfik, D.S., Protein Sci., 2022, vol. 31, pp. 1–11. https://doi.org/10.1002/pro.4310

    Article  CAS  Google Scholar 

  27. Zhao, G., Bruckner, R.C., and Jorns, M.S., Biochemistry, 2008, vol. 47, pp. 9124–9135. https://doi.org/10.1021/bi8008642

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S., Nibe, E., Ferri, S., Tsugawa, W., and Sode, K., Biotechnol. Lett., 2010, vol. 32, pp. 1123–1129. https://doi.org/10.1007/s10529-010-0267-z

    Article  CAS  PubMed  Google Scholar 

  29. Sygmund, C., Santner, P., Krondorfer, I., Peterbauer, C.K., Alcalde, M., Nyanhongo, G.S., Guebitz, G.M., and Ludwig, R., Microb. Cell Fact., 2013, vol. 12, pp. 1–10. https://doi.org/10.1186/1475-2859-12-38

    Article  CAS  Google Scholar 

  30. Ferri, S., Nibe, E., Miyamoto, Y., Kim, S., Tsugawa, W., and Koji, S., ECS Trans., 2019, vol. 35, pp. 113–116. https://doi.org/10.1149/1.3571982

    Article  Google Scholar 

  31. Krondorfer, I., Lipp, K., Brugger, D., Staudigl, P., Sygmund, C., Haltrich, D., and Peterbauer, C.K., PLoS One, 2014, vol. 9, pp. 1–9. https://doi.org/10.1371/journal.pone.0091145

    Article  CAS  Google Scholar 

  32. Burgener, S., Schwer, T., Romero, E., Fraaije, M.W., and Erb, T.J., Molecules, 2018, vol. 23, pp. 68. https://doi.org/10.3390/molecules23010068

    Article  CAS  Google Scholar 

  33. Hiraka, K., Kojima, K., Tsugawa, W., Asano, R., Ikebukuro, K., and Sode, K., Biosens. Bioelectron., 2020, vol. 151, pp. 111974. https://doi.org/10.1016/j.bios.2019.111974

    Article  CAS  PubMed  Google Scholar 

  34. Piubelli, L., Pedotti, M., Feindler-boeckh, S., Pilone, M.S., and Oxidase, C., J. Biol. Chem., 2008, vol. 283, pp. 24738–24747. https://doi.org/10.1074/jbc.M802321200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yue, K.Q., Ghisla, S., and Vrielink, A., J. Biol. Chem., 2001, vol. 276, pp. 30435–30441. https://doi.org/10.1074/jbc.M104103200

    Article  PubMed  Google Scholar 

  36. Chen, L., Lyubimov, A.Y., Brammer, L., Vrielink, A., and Sampson, N.S., Biochemistry, 2008, vol. 47, pp. 5368–5377. https://doi.org/10.1021/bi800228w

    Article  CAS  PubMed  Google Scholar 

  37. Engilberge, S., Wagner, T., Carpentier, P., Girard, E., and Shima, S., Chem. Commun., 2020, vol. 56, pp. 10863–10866. https://doi.org/10.1039/d0cc04557h

    Article  CAS  Google Scholar 

  38. Bruckner, R.C., Winans, J., and Jorns, M.S., Biochemistry, 2011, vol. 50, pp. 4949–4962. https://doi.org/10.1021/bi200349m

    Article  CAS  PubMed  Google Scholar 

  39. Chaiyen, P., Fraaije, M.W., and Mattevi, A., Trends Biochem. Sci., 2012, vol. 37, pp. 373–380. https://doi.org/10.1016/j.tibs.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  40. McDonald, C.A., Fagan, R.L., Collard, F., Monnier, V.M., and Palfey, B.A., J. Am. Chem. Soc., 2011, vol. 133, pp. 16809–16811. https://doi.org/10.1021/ja2081873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Appaji, R.N., Morimitsu, N., and Kunio, Y., Biochim. Biophys. Acta, 1972, vol. 276, pp. 350–362.

    Article  Google Scholar 

  42. Shumakovich, G.P., Dubova, L.G., Byzova, N.A., Yaropolov, A.I., and Bachurin, S.O., Elektrokhimiya, 2004, vol. 40, pp. 1111–1119. https://doi.org/10.1023/b:ruel.0000041364.19078.e9

    Article  Google Scholar 

  43. Shumakovich, G.P., Shleev, S.V., Morozova, O.V., Gonchar, M.V., and Yaropolov, A.I., Appl. Biochem. Microbiol., 2007, vol. 43, pp. 15–20. https://doi.org/10.1134/S0003683807010024

    Article  CAS  Google Scholar 

  44. Tittmann, K., Golbik, R., Ghisla, S., and Hubner, G., Biochemistry, 2000, vol. 39, pp. 10747–10754. https://doi.org/10.1021/bi0004089

    Article  CAS  PubMed  Google Scholar 

  45. Frébortová, J., Fraaije, M.W., Galuszka, P., Šebela, M., Peč, P., Hrbáč, J., Novák, O., Bilyeu, K.D., English, J.T., and Frébort, I., Biochem. J., 2004, vol. 380, pp. 121–130. https://doi.org/10.1042/BJ20031813

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leferink, N.G.H., Van Duijn, E., Barendregt, A., Heck, A.J.R., and van Berkel, W.J.H., Plant Physiol., 2009, vol. 150, pp. 596–605. https://doi.org/10.1104/P.109.136929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loew, N., Tsugawa, W., Nagae, D., Kojima, K., and Sode, K., Sensors (Switzerl), 2017, vol. 17, pp. 2636. https://doi.org/10.3390/s17112636

    Article  CAS  Google Scholar 

  48. Avila, C.C., Mule, S.N., Rosa-Fernandes, L., Viner, R., Barisón, M.J., Costa-Martins, A.G., De Oliveira, G.S., Teixeira, M.M.G., Marinho, C.R.F., Silber, A.M., and Palmisano, G., Genes (Basel), 2018, vol. 9, pp. 413. https://doi.org/10.3390/genes9080413

    Article  CAS  PubMed  Google Scholar 

  49. Ludwig, R., Ozga, M., Zámocky, M., Peterbauer, C., Kulbe, K.D., and Haltrich, D., Biocatal. Biotransform., 2004, vol. 22, pp. 97–104. https://doi.org/10.1080/10242420410001692787

    Article  CAS  Google Scholar 

  50. Camila, M.C., Pineda, T., Yepes, L.M., Upegui, Y., Allemandi, D.A., Robledo, S.M., and Ravetti, S., Arch. Pharm. (Weinheim), 2022, vol. 355, Article ID: 2100432. https://doi.org/10.1002/ardp.202100432

  51. Chudin, A.A. and Kudryashova, E.V., Biotechnologiya, 2022, vol. 38, pp. 80–85. https://doi.org/10.56304/S0234275822040068

    Article  Google Scholar 

  52. Jardim-Messeder, D., Caverzan, A., Rauber, R., de Souza Ferreira, E., Margis-Pinheiro, M., and Galina, A., New Phytol., 2015, vol. 208, pp. 776–789. https://doi.org/10.1111/nph.13515

    Article  CAS  PubMed  Google Scholar 

  53. Batista, A.P., Kletzin, A., and Pereira, M.M., FEMS Microbiol. Lett., 2008, vol. 281, pp. 147–154. https://doi.org/10.1111/j.1574-6968.2008.01082.x

    Article  CAS  PubMed  Google Scholar 

  54. Killyéni, A., Yakovleva, M.E., MacAodha, D., Ó Conghaile, P., Gonaus, C., Ortiz, R., Leech, D., Popescu, I.C., Peterbauer, C.K., and Gorton, L., Electrochim. Acta, 2014, vol. 126, pp. 61–67. https://doi.org/10.1016/j.electacta.2013.08.069

    Article  CAS  Google Scholar 

  55. Milton, R.D., Methods Mol. Biol., 2017, vol. 1504, pp. 193–202. https://doi.org/10.1007/978-1-4939-6499-4_15

    Article  CAS  PubMed  Google Scholar 

  56. Silveira, C.M. and Almeida, M.G., Anal. Bioanal. Chem., 2013, vol. 405, pp. 3619–3635. https://doi.org/10.1007/s00216-013-6786-4

    Article  CAS  PubMed  Google Scholar 

  57. Leferink, N.G.H., van Den Berg, W.A.M., and van Berkel, W.J.H., FEBS J., 2008, vol. 275, pp. 713–726. https://doi.org/10.1111/j.1742-4658.2007.06233.x

    Article  CAS  PubMed  Google Scholar 

  58. Hamafuji, T., Tsugawa, W., and Sode, K., J. Clin. Lab. Anal., 2002, vol. 16, pp. 299–303. https://doi.org/10.1002/jcla.10054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tasca, F., Timur, S., Ludwig, R., Haltrich, D., Volc, J., Antiochia, R., and Gorton, L., Electroanalysis, 2007, vol. 19, pp. 294–302. https://doi.org/10.1002/elan.200603740

    Article  CAS  Google Scholar 

  60. Aljanabi, R., Alsous, L., Sabbah, D.A., Gul, H.I., Gul, M., and Bardaweel, S.K., Molecules, 2021, vol. 26, pp. 6019. https://doi.org/10.3390/molecules26196019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gujjar, R., Marwaha, A., Mazouni, F.E., White, J., White, K.L., Creason, S., Shackleford, D.M., Baldwin, J., Charman, W.N., Buckner, F.S., Charman, S., Rathod, P.K., and Phillips, M.A., J. Med. Chem., 2009, vol. 52, pp. 1864–1872. https://doi.org/10.1021/jm801343r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramos, E.I., Garza, K.M., Krauth-Siegel, R.L., Bader, J., Martinez, L.E., and Maldonado, R.A., J. Parasitol., 2009, vol. 95, pp. 461–466. https://doi.org/10.1645/GE-1686.1

    Article  CAS  PubMed  Google Scholar 

  63. Jortzik, E., Wang, L., Ma, J., and Becker, K., Flavins and Flavoproteins: Methods and Protocols, Methods in Molecular Biology, Stefan Weber, S. and Erik Schleicher, E., Eds., vol. 1146, New York: Springer, 2014, vol. 1146, pp. 113–157. https://doi.org/10.1007/978-1-4939-0452-5_7

  64. Cicero, A.F.G., Fogacci, F., Cincione, R.I., Tocci, G., and Borghi, C., Med. Princ. Pract., 2021, vol. 30, pp. 122–130. https://doi.org/10.1159/000512178

    Article  PubMed  Google Scholar 

  65. García-Huertas, P. and Cardona-Castro, N., Biomed. Pharmacother., 2021, vol. 142, pp. 112020. https://doi.org/10.1016/j.biopha.2021.112020

    Article  CAS  PubMed  Google Scholar 

  66. Singh, R., Geetanjali, and Sharma, N., Chem. Biol. Lett., 2014, vol. 1, pp. 33–39. https://pubs.thesciencein.org/journal/index.php/cbl/article/view/118

    Google Scholar 

  67. Szilágyi, B., Ferenczy, G.G., and Keserű, G.M., Expert Opin. Drug Discov., 2018, vol. 13, pp. 973–982. https://doi.org/10.1080/17460441.2018.1524459

    Article  CAS  PubMed  Google Scholar 

  68. Can, N.Ö., Osmaniye, D., Levent, S., Sağlık, B.N., İnci, B., Ilgın, S., Özkay, Y., and Kaplancıklı, Z.A., Molecules, 2017, vol. 22, pp. 1381. https://doi.org/10.3390/molecules22081381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lara, L.S., Lechuga, G.C., Moreira, C.S., Santos, T.B., Ferreira, V.F., Rocha, D.R., and Pereira, M.C.S., Molecules, 2021, vol. 26, pp. 423. https://doi.org/10.3390/molecules26020423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chudin, A.A., Zlotnikov, I.D., Krylov, S.S., Semenov, V.V., and Kudryashova, E.V., Biochemistry (Moscow), 2023, vol. 88, pp. 131–141. https://doi.org/10.1134/S000629792301011X

    Article  CAS  PubMed  Google Scholar 

  71. Bjelaković, G., Stojanović, I., Bjelaković, G.B., Pavlović, D., Kocić, G., and Daković-Milić, A., Med. Biol., 2002, vol. 9, pp. 363. https://www.semanticscholar.org/paper/COMPETITIVE-INHIBITORS-OF-ENZYMES-AND-THEIR-Bjelakovi%C4%87-Stojanovic/26f0ed8f014111b0031569d8af5b3582f64e339d

    Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Authors AAC and EVK—created conceptualization. Author AAC—selected the literature data on the review topic and prepared original draft. Authors AAC and EVK—discussed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to A. A. Chudin or E. V. Kudryashova.

Ethics declarations

This article does not contain any studies conducted by any authors of this work. This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudin, A.A., Kudryashova, E.V. Flavin-Dependent Dehydrogenases and Oxidases: Comparison of Structural Functional Properties (A Review). Russ J Bioorg Chem 49, 1229–1242 (2023). https://doi.org/10.1134/S1068162023060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023060055

Keywords:

Navigation