Skip to main content
Log in

Structural Analogs of Dehydrozingerone Containing a Pyridoxine Fragment Exhibit Membrane-Modulating Properties and Synergistically Enhance the Antitumor Activity of Cytostatics

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 23 November 2023

This article has been updated

Abstract

Previously we synthesized 10 novel structural analogs of dehydrozingerone based on the pyridoxine (vitamin B6) scaffold. Two lead compounds (compound (I) and compound (II)) expressed good cytotoxic activity against tumor cells and have shown higher selectivity than doxorubicin. In the present study, the mechanism of action of the leading analogues of dehydrozingerone, as well as the efficiency of their combinations with known cytostatics, was studied in more detail. We revealed a synergistic effect of leader dehydrozingerone analogs combinations with known cytostatics—doxorubicin, vinblastine and paclitaxel. It was established, that test compounds (I) and (II), as well as curcumin and dehydrozingerone, possess membrane-damaging activity: cause cytoplasmic membrane depolarization and reduction in its microviscosity, which can explain the increase in toxicity of cytostatics. In addition, the test compounds were found to increase the ATPase activity of P-glycoproteins, likely acting as their substrates. It was also revealed that the test compounds increase the expression of BAX and E-cadherin, decrease the expression of Bcl-2 in cancer cells. Compound (I) does not cause blood cells hemolysis, does not possess DNA-damaging and mutagenic activity, and when administered intravenously to mice, the LD50 was 65 mg/kg. The investigated compounds are promising drug candidates to be further tested on animals with grafted tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Change history

REFERENCES

  1. Kuo, P.C., Damu, A.G., Cherng, C.Y., Jeng, J.F., Teng, C.M., Lee, E.J., and Wu, T.S., Arch. Pharm. Res., 2005, vol. 28, no. 5, pp. 518–528. https://doi.org/10.1007/BF02977752

    Article  CAS  PubMed  Google Scholar 

  2. Menon, V.P. and Sudheer, A.R., Adv. Exp. Med. Biol., 2007, vol. 595, pp. 105–125. https://doi.org/10.1007/978-0-387-46401-5_3

    Article  PubMed  Google Scholar 

  3. Liu, C.H. and Huang, H.Y., Chem. Pharm. Bull., 2012, vol. 60, no. 9, pp. 1118–1124. https://doi.org/10.1248/cpb.c12-00220

    Article  CAS  Google Scholar 

  4. Aggarwal, B.B., Kumar, A., and Bharti, A.C., Anticancer Res., 2003, vol. 23, no. 1A, pp. 363–398

    CAS  PubMed  Google Scholar 

  5. Sharma, R.A., Gescher, A.J., and Steward, W.P., Eur. J. Cancer, 2005, vol. 41, no. 13, pp. 1955–1968. https://doi.org/10.1016/j.ejca.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  6. Shishodia, S., Chaturvedi, M.M., and Aggarwal, B.B., Curr. Probl. Cancer., 2007, vol. 31, no. 4, pp. 243–305. https://doi.org/10.1016/j.currproblcancer.2007.04.001

    Article  PubMed  Google Scholar 

  7. Almanaa, T.N., Geusz, M.E., and Jamasbi, R.J., BMC Complement. Altern. Med., 2012, vol. 12, p. 195. https://doi.org/10.1186/1472-6882-12-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilken, R., Veena, M.S., Wang, M.B., and Srivatsan, E.S., Mol. Cancer, 2011, vol. 10, no. 1, p. 12. https://doi.org/10.1186/1476-4598-10-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, C.L. and Lin, J.K., J. Cancer Mol., 2008, vol. 4, pp. 11–16. https://doi.org/10.29685/JCM.200804.0002

    Article  CAS  Google Scholar 

  10. Sri Ramya, P.V., Angapelly, S., Guntuku, L., Singh Digwal, C., Nagendra Babu, B., Naidu, V.G.M., and Kamal, A., Eur. J. Med. Chem., 2017, vol. 127, pp. 100–114. https://doi.org/10.1016/j.ejmech.2016.12.043

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J.Y., Lee, Y.M., Chang, G.C., Yu, S.L., Hsieh, W.Y., Chen, J.J., Chen, H.W., and Yang, P.C., PLoS One, 2011, vol. 6, no. 8, p. e23756. https://doi.org/10.1371/journal.pone.0023756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, L., Hutzen, B., Ball, S., Foust, E., Sobo, M., Deangelis, S., Pandit, B., Friedman, L., Li, C., Li, P.K., Fuchs, J., and Lin, J., Cancer Sci., 2009, vol. 100, no. 9, pp. 1719–1727. https://doi.org/10.1111/j.1349-7006.2009.01220.x

    Article  CAS  PubMed  Google Scholar 

  13. Anand, P., Kunnumakkara, A.B., Newman, R.A., and Aggarwal, B.B., Mol. Pharm., 2007, vol. 4, no. 6, pp. 807–818. https://doi.org/10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  14. Nelson, K.M., Dahlin, J.L., Bisson, J., Graham, J., Pauli, G.F., and Walters, M.A., J. Med. Chem., 2017, vol. 60, no. 5, pp. 1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, C., Liu, Z., and Liang, G., Curr. Pharm. Des., 2013. vol. 19, no. 11, pp. 2114–2135.

    CAS  PubMed  Google Scholar 

  16. Zhang, Y., Zhao, L., Wu, J., Jiang, X., Dong, L., Xu, F., Zou, P., Dai, Y., Shan, X., Yang, S., and Liang, G., Molecules., 2014, vol. 19, no. 6, pp. 7287–7307. https://doi.org/10.3390/molecules19067287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adams, B.K., Ferstl, E.M., Davis, M.C., Herold, M., Kurtkaya, S., Camalier, R.F., Hollingshead, M.G., Kaur, G., Sausville, E.A., Rickles, F.R., Snyder, J.P., Liotta, D.C., and Shoji, M., Bioorg. Med. Chem., 2004, vol. 12, no. 14, pp. 3871–3883. https://doi.org/10.1016/j.bmc.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  18. Shibata, H., Yamakoshi, H., Sato, A., Ohori, H., Kakudo, Y., Kudo, C., Takahashi, Y., Watanabe, M., Takano, H., Ishioka, C., Noda, T., and Iwabuchi, Y., Cancer Sci., 2009, vol. 100, no. 5, pp. 956–960. https://doi.org/10.1111/j.1349-7006.2009.01127.x

    Article  CAS  PubMed  Google Scholar 

  19. Hampannavar, G.A., Karpoormath, R., Palkar, M.B., and Shaikh, M.S., Bioorg. Med. Chem., 2016, vol. 24, no. 4, pp. 501–520. https://doi.org/10.1016/j.bmc.2015.12.049

    Article  CAS  PubMed  Google Scholar 

  20. Yogosawa, S., Yamada, Y., Yasuda, S., Sun, Q., Takizawa, K., and Sakai, T., J. Nat. Prod., 2012, vol. 75, no. 12, pp. 2088–2093. https://doi.org/10.1021/np300465f

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Q., Loo, W.T.Y., Sze, S.C.W., and Tong Y., Phytomedicine, 2009, vol. 16, no. 10, pp. 916–922. https://doi.org/10.1016/J.PHYMED.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  22. Motohashi, N., Yamagami, C., Tokuda, H., Okuda, Y., Ichiishi, E., Mukainaka, T., Nishino, H., and Saito, Y., Mutat. Res., 2000, vol. 464, no. 2, pp. 247–254. https://doi.org/10.1016/s1383-5718(99)00198-9

    Article  CAS  PubMed  Google Scholar 

  23. Tatsuzaki, J., Bastow, K.F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H., and Lee, K.H., J. Nat. Prod., 2006, vol. 69, no. 10, pp. 1445–1449. https://doi.org/10.1021/np060252z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pavelyev, R.S., Bondar, O.V., Nguyen, T.N.T., Ziganshina, A.A., Al Farroukh, M., Karwt, R., Alekbaeva, G.D., Pugachev, M.V., Yamaleeva, Z.R., Kataeva, O.N., Balakin, K.V., and Shtyrlin, Y.G., Bioorg. Med. Chem., 2018, vol. 26, no. 22, pp. 5824–5837. https://doi.org/10.1016/j.bmc.2018.10.031

  25. Wang, J., Ma, W., and Tu P., Macromol. Biosci., vol. 15, no. 9, pp. 1252–1261. https://doi.org/10.1002/mabi.201500043

  26. Abouzeid, A.H., Patel, N.R., Rachman I.M., Senn S., and Torchilin, V.P., J. Drug Target., 2013, vol. 21, no. 10, pp. 994–1000. https://doi.org/10.3109/1061186X.2013.840639

    Article  CAS  PubMed  Google Scholar 

  27. Misra, R. and. Sahoo, S.K., Mol. Pharm., 2011, vol. 8, no. 3, pp. 852–866. https://doi.org/10.1021/mp100455h

    Article  CAS  PubMed  Google Scholar 

  28. Chearwae, W., Shukla, S., Limtrakul, P., and Ambudkar, S.V., Mol. Cancer Ther., 2006, vol. 5, no. 8, pp. 1995–2006. https://doi.org/10.1158/1535-7163.MCT-06-0087

    Article  CAS  PubMed  Google Scholar 

  29. Anuchapreeda, S., Leechanachai, P., Smith, M.M., Ambudkar, S.V., and Limtrakul P., Biochem. Pharmacol., 2002, vol. 64, no. 4, pp. 573–582. https://doi.org/10.1016/s0006-2952(02)01224-8

    Article  CAS  PubMed  Google Scholar 

  30. Limtrakul, P., Chearwae, W., Shukla, S., Phisalphong, C., and Ambudkar, S.V., Mol. Cell. Biochem., 2007, vol. 296, nos. 1–2, pp. 85–95.https://doi.org/10.1007/s11010-006-9302-8

    Article  CAS  PubMed  Google Scholar 

  31. Ingolfsson, H.I., Koeppe, R.E., 2nd., and Andersen, O.S., Biochemistry., 2007, vol. 46, no. 36, pp. 10384–10391. https://doi.org.https://doi.org/10.1021/bi701013n

    Article  CAS  PubMed  Google Scholar 

  32. Hung, W.C., Chen, F.Y., Lee, C.C., Sun, Y., Lee, M.T., and Huang, H.W., Biophys. J., 2008, vol. 94, no. 11, pp. 4331–4338. https://doi.org/10.1529/biophysj.107.126888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barry, J., Fritz, M., Brender, J.R., Smith, P.E.S., Lee, D.K, and Ramamoorthy A., J. Am. Chem. Soc., 2009, vol. 131, no. 12, pp. 4490–4498. https://doi.org/10.1021/ja809217u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duda, M., Cygan, K., and Wisniewska-Becker, A., Cell Biochem. Biophys., 2020, vol. 78, no. 2, pp. 139–147.https://doi.org/10.1007/s12013-020-00906-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, G., Chen, Y., Yang, N., Zhu, X., Sun, L., and Li, G., Sci. Chin. Life Sci., 2012, vol. 55, no. 6, pp. 527–532.https://doi.org/10.1007/s11427-012-4317-8

  36. Ingólfsson, H.I., Thakur, P., Herold, K.F., Hobart, E.A., Ramsey, N.B., Periole, X., de Jong, D.H., Zwama, M., Yilmaz, D., Hall, K., Maretzky, T., Hemmings, H.C.Jr., Blobel, C., Marrink, S.J., Koçe,r A., Sack, J.T., and Andersen, O.S., ACS Chem. Biol., 2014, vol. 9, no. 8, pp. 1788–1798. https://doi.org/10.1021/cb500086e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, Y., Lee, C.C., Hung, W.C., Chen, F.Y., Lee, M.T., and Huang, H.W., Biophys. J., 2008, vol. 95, no. 5, pp. 2318–2324.https://doi.org/10.1529/biophysj.108.133736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morão, L.G., Polaquini, C.R., Kopacz, M., Torrezan, G.S., Ayusso, G.M., Dilarri, G., Cavalca, L.B., Zielińska, A., Scheffers, D.J., Regasini, L.O., and Ferreira, H., Microbiologyopen, 2019, vol. 8, no. 4, p. e00683.https://doi.org/10.1002/mbo3.683

    Article  CAS  PubMed  Google Scholar 

  39. Bernard, K., Wang, W., Narlawar, R., Schmidt, B., and Kirk, K.L., J. Biol. Chem., 2009, vol. 284, no. 45, pp. 30754–30765. https://doi.org/10.1074/jbc.M109.056010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, X., Chen, Q., Wang, Y., Peng, W., and Cai, H., Front. Physiol., 2014, vol. 5, p. 94. https://doi.org/10.3389/fphys.2014.00094

    Article  PubMed  PubMed Central  Google Scholar 

  41. Choi, S.W., Kim, K.S., Shin, D.H., Yoo, H.Y., Choe, H., Ko, T.H., Youm, J.B., Kim, W.K., Zhang, Y.H., and Kim, S.J., Pflugers Arch., 2013, vol. 465, no. 8, pp. 1121–1134. https://doi.org/10.1007/s00424-013-1239-7

    Article  CAS  PubMed  Google Scholar 

  42. Cho, Y.A., Lee, W., and Choi, J.S., Pharmazie, 2012, vol. 67, no. 2, pp. 124–130.

    CAS  PubMed  Google Scholar 

  43. Shtyrlin, Y.G., Petukhov, A.S., Strelnik, A.D., Shtyrlin, N., Iksanova, A.G., Pugachev, M.V., Pavelyev, R.S., Dzyurkevich, M.S., Garipov, M.R., Balakin, K.V. Russ. Chem. Bull., 2019, vol. 68, no. 5, pp. 911–945. https://doi.org/10.1007/s11172-019-2504-5

    Article  CAS  Google Scholar 

  44. Odds, F.C., J Antimicrob Chemother., 2003, vol. 52, no. 1, p. 1. https://doi.org/10.1093/jac/dkg301

    Article  PubMed  Google Scholar 

  45. den Hollander, J.G., Mouton, J.W., and Verbrugh, H.A., Antimicrob. Agents Chemother., 1998, vol. 42, no. 4, pp. 744–748. https://doi.org/10.1128/AAC.42.4.744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleszczyński, K. and Składanowski, A.C., Toxicol. Appl. Pharmacol., 2009, vol. 234, no. 3, pp. 300–305. https://doi.org/10.1016/j.taap.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  47. Sabnis, R.W., Deligeorgiev, T.G., Jachak, M.N., and Dalvi, T.S., Biotechnol. Histochem. Off. Publ. Biol. Stain Comm., 1997, vol. 72, no. 5, pp. 253–258. https://doi.org/10.3109/10520299709082249

  48. Shapiro, H.M., Curr. Protoc. Cytom., 2004, chapter 9, unit 9.6. https://doi.org/10.1002/0471142956.cy0906s28

  49. Lande, M.B., Donovan, J.M., and Zeidel, M.L., J. Gen. Physiol., 1995, vol. 106, no. 1, pp. 67–84. https://doi.org/10.1085/jgp.106.1.67

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs, P., Parola, A., Robbins, P.W., and Blout, E.R., Proc. Natl. Acad. Sci. U. S. A., 1975, vol. 72, no. 9, pp. 3351–3354. https://doi.org/10.1073/pnas.72.9.3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar, G., Mittal, S., Sak, K., and Tuli, H.S., Life Sci., 2016, vol. 148, pp. 313–328.https://doi.org/10.1016/j.lfs.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  52. Oda, Y., Nakamura, S., Oki, I., Kato, T., and Shinagawa, H., Mutat. Res., 1985, vol. 147, no. 5, pp. 219–229. https://doi.org/10.1016/0165-1161(85)90062-7

    Article  CAS  PubMed  Google Scholar 

  53. McCann, J. and Ames, B.N., Ann. N.Y. Acad. Sci., 1976, vol. 271, pp. 5–13. https://doi.org/10.1111/j.1749-6632.1976.tb23086.x

    Article  CAS  PubMed  Google Scholar 

  54. Drueckes, P., Schinzel, R., and Palm, D., Anal. Biochem., 1995, vol. 230, no. 1, pp. 173–177. https://doi.org/10.1006/abio.1995.1453

    Article  CAS  PubMed  Google Scholar 

  55. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T., Howells, D.W., Karp, N.A., Lazic, S.E., Lidster, K., MacCallum, C.J., Macleod, M., Pearl, E.J., Petersen, O.H., Rawle, F., Reynolds, P., Rooney, K., Sena, E.S., Silberberg, S.D., Steckler, T., and Würbel, H., PLoS Biol., 2020, vol. 18, no. 7, p. e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1972, 6th ed.

Download references

Funding

Cytotoxicity study was performed by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. 0671-2020-0053. All other experiments of the study were funded by RFBR, project no. 20-33-70175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bondar.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of Kazan (Volga region) Federal University (protocol code 24 and date of approval 22.09.2020) for studies involving animals.

All manipulations with animals were carried out in accordance with GOST 33215-2014 of Russian Federation “Guidelines for the maintenance and care of laboratory animals. Rules for equipping premises and organizing procedures for working with laboratory animals”. Additionally, this research was carried out in accordance with the ARRIVE guidelines [55]. The acute toxicity study of compound (I) was agreed with the local ethics committee of the Kazan (Volga region) Federal University, protocol no. 24 of 22.09.2020.

Additional information

Corresponding author: e-mail: oxanav.bondar@gmail.com.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, O.V., Karwt, R., Mohammad, T. et al. Structural Analogs of Dehydrozingerone Containing a Pyridoxine Fragment Exhibit Membrane-Modulating Properties and Synergistically Enhance the Antitumor Activity of Cytostatics. Russ J Bioorg Chem 49, 797–814 (2023). https://doi.org/10.1134/S106816202304009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202304009X

Keywords:

Navigation