Skip to main content
Log in

Anticancer Activity of Chitosan Nanoparticles Containing Satureja khuzistanica Essential Oil, and Carvacrol against Human Melanoma and Breast Cancer

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Cancer, with the arising rate in developed and developing countries, was the 2nd cause of mortality in 2019; one of the greatest concerns is thus drug resistance in different cancers. Recently, essential oils, have been received more attention for preparing new drugs. In this study, a (Carvacrol-rich essential oil) and Carvacrol were first successfully entrapped in chitosan nanoparticles. A comprehensive comparison was then conducted on cytotoxic effects of non-formulated samples and the prepared nanoformulations on two cancer cell lines (A-375 and MDA-MB-468). The particle sizes of the prepared nanoformulation were 196 ± 8 and 211 ± 13 nm, respectively. The cytotoxic effect of chitosan nanoparticles containing Satureja khuzistanica essential oil (IC50 = 78.8 µg/mL) was more potent than other samples on A-375 cells (human melanoma cancer). However, chitosan nanoparticles containing Carvacrol indicated a more potent anticancer effect than other samples (IC50 = 43.5 µg/mL). As the nanoformulations promising efficacies and green constituents, they are thus good candidates for further research in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sung H., Ferlay J., Siegel R.L, Laversanne M., Soerjomataram I., and Jemal, A., CA Cancer J. Clin., 2021, vol.71, pp. 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Waks A.G. and Winer, E.P., JAMA, 20192010, vol. 321, pp. 288–300. https://doi.org/10.1001/jama.2018.19323

  3. Anand P., Sundaram, C., Jhurani, S., Kunnumakkara, A.B, and Aggarwal, B.B., Cancer Lett., 2008, vol. 267, pp. 133–164. https://doi.org/10.1016/j.canlet.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  4. Lomas, A., Leonardi-Bee., J, and Bath-Hextall, F.Br., J. Dermatol., 2012, vol. 166, pp. 1069–1080. https://doi.org/10.1111/j.1365-2133.2012.10830.x

    Article  CAS  PubMed  Google Scholar 

  5. Omar, A., Bakr, A., and Ibrahim, N., Heliyon, 2020, vol. 6, p. e03819. https://doi.org/10.1016/j.heliyon.2020.e03819

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guy, J.r. G.P, Thomas, C.C., Thompson, T., Watson, M., Massetti, G.M., and Richardson, L.C., Morbidity Mortality Weekly Rep., 2015, vol. 64, pp. 591–596.

    Google Scholar 

  7. Haider, T., Pandey, V., Banjare, N., Gupta, P.N., and Soni V., Pharmacol. Rep., 2020, vol. 72, pp. 25–51. https://doi.org/10.1007/s43440-020-00138-7

    Article  Google Scholar 

  8. Li, W., Li, N., Tang, Y., Li B, Liu, L., and Zhang, X, . Bioorg. Med. Chem. Lett., 2012, vol. 22, pp. 6085–6088.

    Article  CAS  PubMed  Google Scholar 

  9. Bakkal, F., Averbeck, S., Averbeck, D., and Idaomar, M., Food Chem. Toxicol., 2008, vol. 46, pp. 446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  CAS  Google Scholar 

  10. Das, S., Singh,V.K., Dwivedy, A.K., Chaudhari, A.K., Upadhyay, and Singh, N., Int. J. Biol. Macromol., 2019, vol. 133, pp. 294–305. https://doi.org/10.1016/j.ijbiomac.2019.04.070

    Article  CAS  PubMed  Google Scholar 

  11. Shetta, A., Kegere, J., and Mamdouh, W., Int. J. Biol. Macromol., 2019, vol. 126, pp. 731–742. https://doi.org/10.1016/j.ijbiomac.2018.12.161

    Article  CAS  PubMed  Google Scholar 

  12. Hussein, A., Kamil, M., Lotfy, S., Mahmoud, K., Mehaya, F., and Mohammad, A., Am. J. Food Technol., 2017, vol. 12, pp. 170–177.

    Article  CAS  Google Scholar 

  13. Blowman, K., Magalhães, M., and Lemos, M.F.L., J. Evid. Based Complementary Altern. Med., 2018, vol. 2018, pp. 3149362. https://doi.org/10.1155/2018/3149362

    Article  CAS  Google Scholar 

  14. Raja, R.R., J. Med. Plant Res., 2012, vol. 6, pp. 203–213. https://doi.org/10.3923/rjmp.2012.203.213

    Article  Google Scholar 

  15. Abdollahi, M., Salehnia, A., Mortazavi, S.H.R, Ebrahimi, M., Shafiee, A., and Fouladian, F., Med. Sci.Monit., 2003, vol. 9, pp. BR331–BR335.

    PubMed  Google Scholar 

  16. Ciani, M., Menghini, L., Mariani, F., Pagiotti, R., Menghini, A., and Fatichenti, F., Biotechnol. Lett., 2000, vol. 22, pp. 1007–10010.

    Article  CAS  Google Scholar 

  17. Eftekhar, F., Raei, F., Yousefzadi, M., Ebrahimi, S.N, and Hadian, J. Z., Naturforsch C. J. Biosci., 2009, vol. 64, pp. 20–24. https://doi.org/10.1515/znc-2009-1-204

    Article  CAS  PubMed  Google Scholar 

  18. Ghazanfari, G., Minaie, B., Yasa, N., Nakhai, L.A, Mohammadirad, A., and Nikfar, S., Toxicol. Mech. Methods, 2006, vol. 16, pp. 365–372.

    Article  CAS  PubMed  Google Scholar 

  19. Adiguzel, A., Ozer, H., KiliC, H., and Ceti, N., Czech J. Food Sci., 2007, vol. 25, p. 81.

    Article  CAS  Google Scholar 

  20. Sharifi-Rad, M., Varoni, E.M, Iriti, M., Martorell, M., Setzer, W.N, del Mar Contreras, M., Salehi, B., Soltani-Nejad, A., Rajabi, S., Tajbakhsh, M., and Sharifi-Rad, J., Phytother. Res., 2018, vol. 32, pp. 1675–1687. https://doi.org/10.1002/ptr.6103

    Article  CAS  PubMed  Google Scholar 

  21. Esmaili, F., Sanei-Dehkordi, A., Amoozegar, F., and Osanloo, M., Biointerface Res. Appl. Chem., 2021, vol. 11, pp. 12516–12529. https://doi.org/10.33263/BRIAC115.1251612529

    Article  CAS  Google Scholar 

  22. Ghanbariasad, A. and Osanloo, M., J. Nanomed. Res., 2020, vol. 5, pp. 234–244. https://doi.org/10.22034/NMRJ.2020.03.004

    Article  CAS  Google Scholar 

  23. Detsi, A., Kavetsou, E., Kostopoulou, I., Pitterou, I., Pontillo, A.R.N., and Tzani, A., Pharmaceutics, 2020, vol. 12, p. 669. https://doi.org/10.3390/pharmaceutics12070669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woranuch, S. and Yoksan, R., Carbohydr. Polym., 2013, vol. 96, pp. 578–585. https://doi.org/10.1016/j.carbpol.2012.08.117

    Article  CAS  PubMed  Google Scholar 

  25. Martínez-Hernández, G.B., Amodio, M.L., and Colelli, G., Innov. Food Sci. Emerg. Technol., 2017, vol. 41. pp. 56–63. https://doi.org/10.1016/j.ifset.2017.02.005

    Article  CAS  Google Scholar 

  26. Esmaeili, A. and Asgari, A., Int. J. Biol. Macromol., 2015, vol. 81, pp. 283–290. https://doi.org/10.1016/j.ijbiomac.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Khojasteh, A., Metón, I., Camino, S., Cusido, R.M., Eibl, and Palazon, R., J. Int. J. Mol. Sci., 2019, vol. 20, p. 2400.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Esmaeili-Mahani, S., Samandari-Bahraseman, M.R., and Yaghoobi, M.M., Iran J. Pharm. Res., 2018, vol. 17, p. 343.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Khakzad, S., Rahmani, F., Hojjati, M., and Tabandeh, M.R., J. Food Process Eng., 2019, vol. 2, pp. 127–132.

    Google Scholar 

  30. Yousefzadi, M., Riahi-Madvar, A., Hadian, J., Rezaee, F., Rafiee, R., and Biniaz, M., J. Immunotoxicol., 2014, vol. 11, pp. 50–55. https://doi.org/10.3109/1547691X.2013.789939

    Article  CAS  PubMed  Google Scholar 

  31. Kazemi, S., Soltanzadeh, H., and Shahsavari, G.T., 2021. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-296598/v1

  32. Arunasree, K., Phytomedicine, 2010, vol. 17. pp. 581–588.

    Article  CAS  PubMed  Google Scholar 

  33. Mehdi, S.J, Ahmad, A., Irshad, M., Manzoor, N., and Rizvi, M.M.A., Biol. Med., 2011, vol. 3, pp. 307–312. https://doi.org/10.1002/ptr.6048

    Article  CAS  Google Scholar 

  34. Fan, K., Li, X., Cao, Y., Qi, H., Li, L., and Zhang, Q., Anti-Cancer Drugs, 2015, vol. 26, pp. 813–823. https://doi.org/10.1097/CAD.0000000000000263

  35. Jung, C.Y., Kim, S-Y., and Lee, C., Anticancer Res., 2018, vol. 38, pp. 279–286. https://doi.org/10.21873/anticanres.12219

    Article  CAS  PubMed  Google Scholar 

  36. Osanloo, M., Sedaghat, M., Sereshti, H., Rahmanian, M., Saeedi Landi, F., and Amani, A., J. Nanostruct., 2019, vol. 9, pp. 723–735. https://doi.org/10.22052/JNS.2019.04.014

    Article  CAS  Google Scholar 

  37. Barzegar, M., Ghaderi Ghahfarokhi., M, Sahari, M., and Azizi, M., J. Agric. Sci. Technol., 2016, vol. 18, pp. 1781–1792.

    Google Scholar 

  38. Iannitelli, A., Grande, R., Stefano, A.D., Giulio, M.D., Sozio, P., and Bessa, L.J., Int. J. Mol. Sci., 2011, vol. 12, pp. 5039–5051. https://doi.org/10.3390/ijms12085039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rashidipour, M., Ashrafi, B., Nikbakht, M.R., Veiskarami, S., Taherikalani, M., and Soroush S., Prep. Biochem. Biotechnol., 2021, pp. 1–8.

  40. Maryam, K., Shakeri, S., and Kiani, K., IET Nanobiotechnol., 2015, vol. 9, pp. 294–299. https://doi.org/10.1049/iet-nbt.2014.0040

    Article  PubMed  Google Scholar 

  41. Ashbaugh, H.S. and Paulaitis, M.E., J. Am. Chem. Soc., 2001, vol. 123, pp. 10721–10728. https://doi.org/10.1021/ja016324k

    Article  CAS  PubMed  Google Scholar 

  42. Carlsson, J. and Åqvist J., Phys. Chem. Chem. Phys., 2006, vol. 8, pp. 5385–5395. https://doi.org/10.1039/b608486a

    Article  CAS  PubMed  Google Scholar 

  43. Lammari, N., Louaer, O., Meniai, A.H, and Elaissari, A., Pharmaceutics, 2020, vol. 12, p. 431. https://doi.org/10.3390/pharmaceutics12050431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho, K., Wang, X., Nie, S., and Shin, D.M., Clin. Cancer Investig. J., 2008, 14, pp. 1310–13116. https://doi.org/10.1158/1078-0432.CCR-07-1441

    Article  CAS  Google Scholar 

  45. Nie, S., Xing, Y., Kim, G.J., and Simons, J.W., Ann. Rev. Biomed. Eng., 2007, vol. 9, pp. 257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  Google Scholar 

  46. Naves, L.B., Dhand, C., Venugopal, J.R., Rajamani, L., Ramakrishna, S., and Almeida, L., Progress Biomaterials, 2017, vol. 6, pp. 13–26. https://doi.org/10.1007/s40204-017-0064-z

    Article  CAS  Google Scholar 

  47. Ghanbariasad, A., Valizadeh, A., Ghadimi, S.N., Fereidouni, Z., and Osanloo, M., J. Drug. Delivery Sci. Technol., 2021, vol. 63, p. 102436. https://doi.org/10.1016/j.jddst.2021.102436

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Fasa University of Medical Sciences.

Funding

Fasa University of Medical Sciences financially supported this research, grant number 401143, Ethics approval and consent to participate: The ethical committee has ethically approved this research; IR.FUMS.REC.1401.127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zarenezhad.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Abbreviations: ChiNPs, chitosan nanoparticles; Eos, essential oils; Satureja khuzistanica, S. khuzistanica; FBS, fetal bovine serum; PBS, phosphate-buffered saline; DMSO, dimethyl sulfoxide; MTT, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazo-lium bromide; DLS, dynamic light scattering; TPP, sodium-tri-polyphosphate; SKChiNPs, Satureja khuzistanica chitosan nanoparticles; CarChiNPs, carvacrol chitosan nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osanloo, M., Alipanah, H., Farjam, M. et al. Anticancer Activity of Chitosan Nanoparticles Containing Satureja khuzistanica Essential Oil, and Carvacrol against Human Melanoma and Breast Cancer. Russ J Bioorg Chem 49, 594–601 (2023). https://doi.org/10.1134/S1068162023030160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023030160

Keywords:

Navigation