Skip to main content
Log in

Heterogeneous Catalytic Fractionation of Birch-Wood Biomass into a Microcrystalline Cellulose, Xylose and Enterosorbents

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The main components of the birch wood were fractionated into a microcrystalline cellulose, xylose and enterosorbents by an integration of heterogeneous catalytic processes of an acidic hydrolysis and a peroxide delignification of the wood biomass for the first time. The wood hemicelluloses were hydrolyzed to xylose at a temperature of 150°C in the presence of the Amberlyst® 15 solid acidic catalyst. Then, the lignocellulosic product of the wood hydrolysis was subjected to the peroxide delignification in the formic acid–water medium in the presence of the solid TiO2 catalyst with a formation of the microcrystalline cellulose (MCC) and the organic-soluble lignin. Yields of MCC and the organic-soluble lignin proved to be 64.5 and 11.5 wt % of a mass of the prehydrolyzed wood, respectively, under the determined optimal conditions (100°C, 7.2 wt % of Н2О2, 37.8 wt % of НСООН, LWR 15, and a duration of 4 h). The enterosorbents were prepared by a treatment of the organic-soluble lignin with 0.4% NaHCO3 or hot water. The sorption capacity of these enterosorbents was 97.7 and 236.7 mg/g according to methylene blue and gelatin, respectively. These values were significantly higher than those of the Polifepan commercial enterosorbent (44 and 115 mg/g, respectively). The products of the catalytic fractionation of the birch wood were characterized by physicochemical (FTIR, XRD, SEM, and GC) and chemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cherubini, F., The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Convers. Manage., 2010, vol. 51, pp. 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  2. Bajpai, P., Biorefinery in the Pulp and Paper Industry, Amsterdam: Elsevier, 2013. https://doi.org/10.1016/C2012-0-06724-5

    Book  Google Scholar 

  3. Environmentally Friendly Technologies for the Pulp and Paper Industry, Young, R.A. and Akhtar, M., Eds., New York: Wiley, 1998.

    Google Scholar 

  4. Ferrer, A., Vega, A., Rodriguez, A., Ligero, P., and Jimenez, L., Milox fractionation of empty fruit bunches from Elaeis guineensis, Bioresour. Technol., 2011, vol. 102, pp. 9755–9762.

    Article  CAS  Google Scholar 

  5. Garyntseva, N.V., Sudakova, I.G., Chudina, A.I., Malyar, Yu.N., and Kuznetsov, B.N., Optimization of the process of abies wood peroxide delignification in the medium ‘formic acid-water’ in the presence of TiO2 catalyst, Zh. Sib. Fed. Univ., Khim., 2019, vol. 12, no. 4, pp. 522–535. https://doi.org/10.17516/1998-2836-0148

    Article  Google Scholar 

  6. Kuznetsov, B.N., Malyar, Yu.N., Kuznetsova, S.A., Grishechko, L.I., Kazachenko, A.S., Levdansky, A.V., Pestunov, A.V., Boyandin, A.N., and Celzard, A., Isolation, study and application of organosolv lignins (review), J. Sib. Fed. Univ. Chem., 2016, vol. 9, no. 4, pp. 454–482. https://doi.org/10.17516/1998-2836-2016-9-4-454-482

    Article  Google Scholar 

  7. Liu, X., Feng, Sh., Fang, Q., Jiang, Zh., and Hu, Ch., Reductive catalytic fractionation of lignin in birch sawdust to monophenolic compounds with high selectivity, Mol. Catal., 2020, vol. 495, p. 111164. https://doi.org/10.1016/j.mcat.2020.111164

    Article  CAS  Google Scholar 

  8. Kazachenko, A.S., Baryshnikov, S.V., Chudina, A.I., Malyar, Yu.N., Sychev, V.V., Taran, O.P., D’yakovich, L., and Kuznetsov, B.N., Hydrogenation of abies wood and ethanol–lignin by molecular hydrogen in supercritical ethanol over bifunctional Ru/C catalyst, Khim. Rastit. Syr’ya, 2019, no. 2, pp. 15–26. https://doi.org/10.14258/jcprm.2019025108

  9. Dussan, K., Girisuta, B., Haverty, D., Leahya, J.J., and Hayes, M.H.B., The effect of hydrogen peroxide concentration and solid loading on the fractionation of biomass in formic acid, Carbohydr. Polym., 2014, vol. 111, pp. 374–384. https://doi.org/10.1016/j.carbpol.2014.04.039

    Article  CAS  Google Scholar 

  10. Ma, R., Xu, Y., and Zhang, X., Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production, ChemSusChem, 2015, vol. 8, pp. 24–51. https://doi.org/10.1002/cssc.201402503

    Article  CAS  Google Scholar 

  11. Ramadoss, G. and Muthukumar, K., Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production, Chem. Eng. J., 2015, vol. 260, pp. 178–187. https://doi.org/10.1016/j.cej.2014.08.006

    Article  CAS  Google Scholar 

  12. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Levdansky, V.A., Ivanchenko, N.M., Pestunov, A.V., Djakovitch, L., and Pinel, C., Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials, Wood Sci. Technol., 2018, vol. 52, pp. 1377–1394. https://doi.org/10.1007/s00226-018-1029-7

    Article  CAS  Google Scholar 

  13. Borrega, M., Nieminen, K., and Sixta, H., Effects of hot water extraction in a batch reactor on the delignification of birch wood, BioResources, 2011, vol. 6, no. 2, pp. 1890–1903.

    CAS  Google Scholar 

  14. Sjöström, E. and Alern, R., Analytical Methods of Wood Chemistry. Pulping and Papermaking, Berlin: Springer, 1999.

    Book  Google Scholar 

  15. Vilcocq, L., Castilho, P., Carvalheiro, F., and Duarte, L., Hydrolysis of oligosaccharides over solid acid catalysts: A review, ChemSusChem, 2014, vol. 7, pp. 1010–1019. https://doi.org/10.1002/cssc.201300720

    Article  CAS  Google Scholar 

  16. Hu, L., Lin, L., Wu, Z., Zhou, S., and Liu, S., Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts, Appl. Catal. B: Environ., 2015, vols. 174 175, pp. 225–243.

    Article  Google Scholar 

  17. Sudakova, I.G., Garyntseva, N.V., Chudina, A.I., and Kuznetsov, B.N., Regularities of the process of peroxide delignification of pine wood in the presence of a sulfuric acid catalyst, Khim. Rastit. Syr’ya, 2018, no. 4, pp. 63–71. https://doi.org/10.14258/jcprm.2018044079

  18. Reshetnikov, V.I., Evaluation of the adsorption capacity of enterosorbents and related medicinal preparations, Pharm. Chem. J., 2003, vol. 37, no. 5, pp. 246–251.

    Article  CAS  Google Scholar 

  19. Ruiz-Matute, A.I., Hernandez-Hernandez, O., Rodriguez-Sanchez, S., Sanz, M.L., and Martinez-Castro, I., Derivatization of carbohydrates for GC and GC-MS analyses, J. Chromatogr., B, 2011, vol. 879, pp. 1226–1240. https://doi.org/10.1016/j.jchromb.2010.11.013

    Article  CAS  Google Scholar 

  20. Testova, L., Vilonen, K.M., Pynnönen, H., and Tenkanen, M., Isolation of hemicelluloses from birch wood: Distribution of wood components and preliminary trials in dehydration of hemicelluloses, Lenzinger Ber., 2009, vol. 87, pp. 58–65.

    CAS  Google Scholar 

  21. Degirmenci, V., Uner, D., Cinlar, B., et al., Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis, Catal. Lett., 2011, vol. 141, pp. 33–42. https://doi.org/10.1007/s10562-010-0466-1

    Article  CAS  Google Scholar 

  22. Wu, C., Bing, L., Li, S., Yu, D., and Wang, D., Effect of coagulating agents on lignin and oligosaccharide contents in pre-hydrolysis liquor obtained in the production of dissolving pulp from poplar residual slabs, BioResources, 2016, vol. 11, no. 1, pp. 87–94. https://doi.org/10.15376/biores.11.1.87-94

    Article  CAS  Google Scholar 

  23. Nakajima, K., Okamura, M., Kondo, et al., Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst, Chem. Mater., 2009, vol. 21, pp. 186–193. https://doi.org/10.1021/cm801441c

    Article  CAS  Google Scholar 

  24. Kuznetsov, B.N., Yatsenkova, O.V., Chudina, A.I., Skripnikov, A.M., Kozlova, S.A., Garyntseva, N.V., and Chesnokov, N.V., Influence of mechanical and chemical activation of microcrystalline cellulose on its structure and reaction ability in hydrolysis over solid acid catalyst SBA-15, Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 1, pp. 122–133.

    Google Scholar 

  25. Yatsenkova, O.V., Chudina, A.I., Skripnikov, A.M., Chesnokov, N.V., and Kuznetsov, B.N., The influence of sulfuric acid catalyst concentration on hydrolysis of birch wood hemicelluloses, Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 2, pp. 211–221. https://doi.org/10.17516/1998-2836-2015-8-2-211-221

    Article  Google Scholar 

  26. Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Tarabanko, V.E., Yatsenkova, O.V., Djakovitch, L., and Rataboul, F., Processes of catalytic oxidation for the production of chemicals from softwood biomass, Catal. Today, 2021, vol. 375, pp. 132–144. https://doi.org/10.1016/j.cattod.2020.05.044

    Article  CAS  Google Scholar 

  27. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/. https://doi.org/10.18434/M32189

  28. Pen, R.Z., Planirovanie eksperimenta v Statgraphics (Planning an Experiment in Statgraphics), 2nd ed., Krasnoyarsk, 2012.

  29. Adel, A.M., Abd El-Wahab, Z.H., Ibrahim, A.A., and Al-Shemy, M.T., Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties, Carbohydr. Polymers, 2001, vol. 83, no. 2, pp. 676–687. https://doi.org/10.1016/j.carbpol.2010.08.039

    Article  CAS  Google Scholar 

  30. Fan, M., Dai, D., and Huang, B., Fourier transform infrared spectroscopy for natural fibres, in Proceedings of the International Conference on Innovative Technologies (IN-TECH 2012), Rijeka, Croatia, 2012, Salih, S., Ed., pp. 45–68.

  31. Nishiyama, Y., Langan, P., and Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc., 2002, vol. 124, pp. 9074–9082. https://doi.org/10.1021/ja0257319

    Article  CAS  Google Scholar 

  32. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., and Jonson, D.K., Cellulose crystallinity index: Measurement techniques and their impact on integrating cellulose performance, Biotechnol. Biofuels, 2010, vol. 3, p. 10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  33. Garyntseva, N.V., Sudakova, I.G., and Kuznetsov, B.N., Properties of enterosorbents obtained from acetic acid lignins of abies, aspen and birch wood, Zh. Sib. Fed. Univ., Khim., 2011, vol. 4, no. 2, pp. 121–126.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation, project no. 21-13-00250, https://rscf.ru/project/21-13-00250/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Onoprienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Garyntseva, N.V., Sudakova, I.G. et al. Heterogeneous Catalytic Fractionation of Birch-Wood Biomass into a Microcrystalline Cellulose, Xylose and Enterosorbents. Russ J Bioorg Chem 48, 1476–1485 (2022). https://doi.org/10.1134/S1068162022070160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022070160

Keywords:

Navigation