Skip to main content

The Value of pH Sensors in Maintaining Homeostasis of the Nervous System

Abstract

Maintaining pH homeostasis is vital for all mammalian cells since hydrogen and hydroxyl ions perform important functions in the regulation of metabolism. Today, it is believed that maintaining the pH in the neutral range (pH 7.2–7.6) in the nervous system is necessary for its normal functioning, while small changes in pH affect the excitability of neurons, synaptic transmission, neurotransmitter transport and intercellular communication. Sensitivity to changes in pH is a feature of many membrane proteins that play a key role in neurotransmission. Recent studies have revealed the presence in the nervous system of protein molecules, which are sensors of a significant change in the pH of the extracellular environment in both acidic (to pH 5) and alkaline (to pH 9) areas. It has been established that a change in the pH of the extracellular environment causes various cellular responses in which ion channels, ionotropic receptors, G protein-coupled receptors, connexins and receptor tyrosine kinases are involved. The presence of these proteins in the nervous system suggests that local acid–base balance shifts are one of the key factors regulating neuronal activity. This review describes the properties of neuronal pH-sensitive proteins.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Tortora, G.J. and Derrickson, B., Principles of Anatomy and Physiology, 13th ed., Hoboken, NJ: Wiley, 2012.

    Google Scholar 

  2. Chesler, M., Physiol. Rev., 2003, vol. 83, pp. 1183–1221.

    CAS  PubMed  Google Scholar 

  3. Obara, M., Szeliga, M., and Albrecht, J., Neurochem. Int., 2008, vol. 52, pp. 905–919.

    CAS  PubMed  Google Scholar 

  4. Nattie, E. and Li, A., Comp. Physiol., 2012, vol. 2, pp. 221–254.

    Google Scholar 

  5. Guyenet, P.G. and Bayliss, D.A., Neuron, 2015, vol. 87, pp. 946–961.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirata, Y. and Oku, Y., Cell Calcium, 2010, vol. 48, pp. 124–132.

    CAS  PubMed  Google Scholar 

  7. Mulkey, D.K. and Wenker, I.C., Exp. Physiol., 2011, vol. 96, pp. 400–406.

    CAS  PubMed  Google Scholar 

  8. Turovsky, E., Theparambil, S.M., Kasymov, V., Deitmer, J.W., Del Arroyo, A.G., Ackland, G.L., Corneveaux, J.J., Allen, A.N., Huentelman, M.J., Kasparov, S., Marina, N., and Gourine, A.V., J. Neurosci., 2016, vol. 36, pp. 10 750–10 758.

    Google Scholar 

  9. Gourine, A.V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M.F., Lane, S., Teschemacher, A.G., Spyer, K.M., Deisseroth, K., and Kasparov, S., Science, 2010, vol. 329, pp. 571–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasymov, V., Larina, O., Castaldo, C., Marina, N., Patrushev, M., Kasparov, S., and Gourine, A.V., J. Neurosci., 2013, vol. 33, pp. 435–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kryshtal, O.A., Trinus, K.F., and Dashkin, A.N., Neirofiziologiia, 1982, vol. 14, pp. 209–211.

    CAS  PubMed  Google Scholar 

  12. Wang, Y.Z. and Xu, T.L., Mol. Neurobiol., 2011, vol. 44, pp. 350–358.

    CAS  PubMed  Google Scholar 

  13. Xiong, Z.G., Zhu, X.M., Chu, X.P., Minami, M., Hey, J., Wei, W.L., MacDonald, J.F., Wemmie, J.A., Price, M.P., Welsh, M.J., and Simon, R.P., Cell, 2004, vol. 118, pp. 687–698.

    CAS  PubMed  Google Scholar 

  14. Holzer, P., Handb. Exp. Pharmacol., 2009, pp. 283–332.

  15. Wemmie, J.A., Taugher, R.J., and Kreple, C.J., Nat. Rev. Neurosci., 2013, vol. 14, pp. 461–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wemmie, J.A., Price, M.P., and Welsh, M.J., Trends Neurosci., 2006, vol. 29, pp. 578–586.

    CAS  PubMed  Google Scholar 

  17. Song, N., Zhang, G., Geng, W., Liu, Z., Jin, W., Li, L., Cao, Y., Zhu, D., Yu, J., and Shen, L., PLoS One, 2012, vol. 7, e39 982.

    Google Scholar 

  18. Huda, R., Pollema-Mays, S.L., Chang, Z., Alheid, G.F., McCrimmon, D.R., and Martina, M., J. Physiol., 2012, vol. 590, pp. 4761–4775.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Song, N., Guan, R., Jiang, Q., Hassanzadeh, C.J., Chu, Y., Zhao, X., Wang, X., Yang, D., Du, Q., Chu, X.P., and Shen, L., Sci. Rep., 2016, vol. 6, p. 38 777.

    Google Scholar 

  20. Gestreau, C., Heitzmann, D., Thomas, J., Dubreuil, V., Bandulik, S., Reichold, M., Bendahhou, S., Pierson, P., Sterner, C., Peyronnet-Roux, J., Benfriha, C., Tegtmeier, I., Ehnes, H., Georgieff, M., Lesage, F., Brunet, J.-F., Goridis, C., Warth, R., and Barhanin, J., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 2325–2330.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C., and Lazdunski, M., EMBO J., 1997, vol. 16, pp. 5464–5471.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, Y., Bang, H., and Kim, D., J. Biol. Chem., 2000, vol. 275, pp. 9340–9347.

    CAS  PubMed  Google Scholar 

  23. Reyes, R., Duprat, F., Lesage, F., Fink, M., Salinas, M., Farman, N., and Lazdunski, M., J. Biol. Chem., 1998, vol. 273, pp. 30 863–30 869.

    Google Scholar 

  24. Morton, M.J., Abohamed, A., Sivaprasadarao, A., and Hunter, M., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 16 102–16 106.

    Google Scholar 

  25. Millar, J.A., Barratt, L., Southan, A.P., Page, K.M., Fyffe, R.E., Robertson, B., and Mathie, A., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 3614–3618.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lauritzen, I., Zanzouri, M., Honore, E., Duprat, F., Ehrengruber, M.U., Lazdunski, M., and Patel, A.J., J. Biol. Chem., 2003, vol. 278, pp. 32 068–32 076.

    Google Scholar 

  27. Pei, L., Wiser, O., Slavin, A., Mu, D., Powers, S., Jan, L.Y., and Hoey, T., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 7803–7807.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mu, D., Chen, L., Zhang, X., See, L.H., Koch, C.M., Yen, C., Tong, J.J., Spiegel, L., Nguyen, K.C., Servoss, A., Peng, Y., Pei, L., Marks, J.R., Lowe, S., Hoey, T., Jan, L.Y., McCombie, W.R., Wigler, M.H., and Powers, S., Cancer Cell, 2003, vol. 3, pp. 297–302.

    CAS  PubMed  Google Scholar 

  29. Wang, S., Benamer, N., Zanella, S., Kumar, N.N., Shi, Y., Bevengut, M., Penton, D., Guyenet, P.G., Lesage, F., Gestreau, C., Barhanin, J., and Bayliss, D.A., J. Neurosci., 2013, vol. 33, pp. 16 033–16 044.

    Google Scholar 

  30. Kumar, N.N., Velic, A., Soliz, J., Shi, Y., Li, K., Wang, S., Weaver, J.L., Sen, J., Abbott, S.B., Lazarenko, R.M., Ludwig, M.G., Perez-Reyes, E., Mohebbi, N., Bettoni, C., Gassmann, M., Suply, T., Seuwen, K., Guyenet, P.G., Wagner, C.A., and Bayliss, D.A., Science, 2015, vol. 348, pp. 1255–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goncalves, C.M. and Mulkey, D.K., J. Physiol., 2018, vol. 596, pp. 4033–4042.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Enyedi, P. and Czirjak, G., Physiol. Rev., 2010, vol. 90, pp. 559–605.

    CAS  PubMed  Google Scholar 

  33. Wang, X., Guan, R., Zhao, X., Zhu, D., Song, N., and Shen, L., Front. Cell. Neurosci., 2018, vol. 12, p. 285.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buehler, P.K., Bleiler, D., Tegtmeier, I., Heitzmann, D., Both, C., Georgieff, M., Lesage, F., Warth, R., and Thomas, J., Respir. Physiol. Neurobiol., 2017, vol. 244, pp. 17–25.

    CAS  PubMed  Google Scholar 

  35. Girard, C., Duprat, F., Terrenoire, C., Tinel, N., Fosset, M., Romey, G., Lazdunski, M., and Lesage, F., Biochem. Biophys. Res. Commun., 2001, vol. 282, pp. 249–256.

    CAS  PubMed  Google Scholar 

  36. Decher, N., Maier, M., Dittrich, W., Gassenhuber, J., Bruggemann, A., Busch, A.E., and Steinmeyer, K., FEBS Lett., 2001, vol. 492, pp. 84–89.

    CAS  PubMed  Google Scholar 

  37. Sandoz, G., Douguet, D., Chatelain, F., Lazdunski, M., and Lesage, F., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 14 628–14 633.

    Google Scholar 

  38. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M., and Honore, E., J. Biol. Chem., 1999, vol. 274, pp. 26 691–6696.

    Google Scholar 

  39. Lesage, F., Terrenoire, C., Romey, G., and Lazdunski, M., J. Biol. Chem., 2000, vol. 275, pp. 28 398–28 405.

    Google Scholar 

  40. Sano, Y., Inamura, K., Miyake, A., Mochizuki, S., Kitada, C., Yokoi, H., Nozawa, K., Okada, H., Matsushime, H., and Furuichi, K., J. Biol. Chem., 2003, vol. 278, pp. 27 406–27 412.

    Google Scholar 

  41. Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., and Kurachi, Y., Physiol. Rev., 2010, vol. 90, pp. 291–366.

    CAS  PubMed  Google Scholar 

  42. Coulter, K.L., Perier, F., Radeke, C.M., and Vandenberg, C.A., Neuron, 1995, vol. 15, pp. 1157–1168.

    CAS  PubMed  Google Scholar 

  43. Wenker, I.C., Kreneisz, O., Nishiyama, A., and Mulkey, D.K., J. Neurophysiol., 2010, vol. 104, pp. 3042–3052.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Somodi, S., Varga, Z., Hajdu, P., Starkus, J.G., Levy, D.I., Gaspar, R., and Panyi, G., Am. J. Physiol. Cell. Physiol., 2004, vol. 287, pp. C1067–C1076.

    CAS  PubMed  Google Scholar 

  45. Ishii, K., Nunoki, K., Yamagishi, T., Okada, H., and Taira, N., J. Pharmacol. Exp. Ther., 2001, vol. 296, pp. 405–411.

    CAS  PubMed  Google Scholar 

  46. Steidl, J.V. and Yool., A.J., Mol. Pharmacol., 1999, vol. 55, pp. 812–820.

    CAS  PubMed  Google Scholar 

  47. Jiang, M., Dun, W., and Tseng, G.N., Am. J. Physiol., 1999, vol. 277, pp. H1283–1292.

    CAS  PubMed  Google Scholar 

  48. Putnam, R.W., Filosa, J.A., and Ritucci, N.A., Am. J. Physiol. Cell. Physiol., 2004, vol. 287, pp. C1493–C1526.

    CAS  PubMed  Google Scholar 

  49. Semtner, M., Schaefer, M., Pinkenburg, O., and Plant, T.D., J. Biol. Chem., 2007, vol. 282, pp. 33 868–33 878.

    Google Scholar 

  50. Cui, N., Zhang, X., Tadepalli, J.S., Yu, L., Gai, H., Petit, J., Pamulapati, R.T., Jin, X., and Jiang, C., J. Neurophysiol., 2011, vol. 105, pp. 2791–2801.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tani, M., Kotani, S., Hayakawa, C., Lin, S.T., Irie, S., Ikeda, K., Kawakami, K., and Onimaru, H., Pflugers Arch., 2017, vol. 469, pp. 327–338.

    CAS  PubMed  Google Scholar 

  52. Shimizu, T., Higuchi, T., Fujii, T., Nilius, B., and Sakai, H., Pflugers Arch., 2011, vol. 461, pp. 507–513.

    CAS  PubMed  Google Scholar 

  53. Olsen, R.W. and Sieghart, W., Neuropharmacology, 2009, vol. 56, pp. 141–148.

    CAS  PubMed  Google Scholar 

  54. Mercik, K., Pytel, M., Cherubini, E., and Mozrzymas, J.W., Neuropharmacology, 2006, vol. 51, pp. 305–314.

    CAS  PubMed  Google Scholar 

  55. Dietrich, C.J. and Morad, M., J. Neurosci., 2010, vol. 30, pp. 16 044–16 052.

    Google Scholar 

  56. Huang, R.Q. and Dillon, G.H., J. Neurophysiol., 1999, vol. 82, pp. 1233–1243.

    CAS  PubMed  Google Scholar 

  57. Iceman, K.E., Corcoran, A.E., Taylor, B.E., and Harris, M.B., Respir. Physiol. Neurobiol., 2014, vol. 203, pp. 28–34.

    CAS  PubMed  Google Scholar 

  58. Habermacher, C., Dunning, K., Chataigneau, T., and Grutter, T., Neuropharmacology, 2016, vol. 104, pp. 18–30.

    CAS  PubMed  Google Scholar 

  59. Khakh, B.S., Burnstock, G., Kennedy, C., King, B.F., North, R.A., Seguela, P., Voigt, M., and Humphrey, P.P., Pharmacol. Rev., 2001, vol. 53, pp. 107–118.

    CAS  PubMed  Google Scholar 

  60. King, B.F., Townsend-Nicholson, A., Wildman, S.S., Thomas, T., Spyer, K.M., and Burnstock, G., J. Neurosci., 2000, vol. 20, pp. 4871–4877.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Funk, G.D., Compr. Physiol., 2013, vol. 3, pp. 331–363.

    PubMed  Google Scholar 

  62. Wenker, I.C., Sobrinho, C.R., Takakura, A.C., Moreira, T.S., and Mulkey, D.K., J. Physiol., 2012, vol. 590, pp. 2137–2150.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sobrinho, C.R., Wenker, I.C., Poss, E.M., Takakura, A.C., Moreira, T.S., and Mulkey, D.K., J. Physiol., 2014, vol. 592, pp. 1309–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paoletti, P., Bellone, C., and Zhou, Q., Nat. Rev. Neurosci., 2013, vol. 14, pp. 383–400.

    CAS  PubMed  Google Scholar 

  65. Tang, C.M., Dichter, M., and Morad, M., Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 6445–6449.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Traynelis, S.F. and Cull-Candy, S.G., Nature, 1990, vol. 345, pp. 347–350.

    CAS  PubMed  Google Scholar 

  67. Giffard, R.G., Monyer, H., Christine, C.W., and Choi, D.W., Brain. Res., 1990, vol. 506, pp. 339–342.

    CAS  PubMed  Google Scholar 

  68. Chen, H.Y. and Chesler, M., J. Neurosci., 2015, vol. 35, pp. 873–877.

    PubMed  PubMed Central  Google Scholar 

  69. Beltran-Castillo, S., Olivares, M.J., Contreras, R.A., Zuniga, G., Llona, I., von Bernhardi, R., and Eugenin, J.L., Nat. Commun., 2017, vol. 8, p. 838.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ludwig, M.G., Vanek, M., Guerini, D., Gasser, J.A., Jones, C.E., Junker, U., Hofstetter, H., Wolf, R.M., and Seuwen, K., Nature, 2003, vol. 425, pp. 93–98.

    CAS  PubMed  Google Scholar 

  71. Murakami, N., Yokomizo, T., Okuno, T., and Shimizu, T., J. Biol. Chem., 2004, vol. 279, pp. 42 484–42 491.

    Google Scholar 

  72. Wang, J.Q., Kon, J., Mogi, C., Tobo, M., Damirin, A., Sato, K., Komachi, M., Malchinkhuu, E., Murata, N., Kimura, T., Kuwabara, A., Wakamatsu, K., Koizumi, H., Uede, T., Tsujimoto, G., Kurose, H., Sato, T., Harada, A., Misawa, N., Tomura, H., and Okajima, F., J. Biol. Chem., 2004, vol. 279, pp. 45 626–45 633.

    Google Scholar 

  73. Seuwen, K., Ludwig, M.G., and Wolf, R.M., J. Recept. Signal. Transduct. Res., 2006, vol. 26, pp. 599–610.

    CAS  PubMed  Google Scholar 

  74. McGuire, J., Herman, J.P., Ghosal, S., Eaton, K., Sallee, F.R., and Sah, R., Biochem. Biophys. Res. Commun., 2009, vol. 386, pp. 420–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Petrenko, A.G., Zozulya, S.A., Deyev, I.E., and Eladari, D., Biochim. Biophys. Acta, 2013, vol. 1834, pp. 2170–2175.

    CAS  PubMed  Google Scholar 

  76. Deev, I.E., Vasilenko, K.P., Kurmangaliev, E., Serova, O.V., Popova, N.V., Galagan, Y.S., Burova, E.B., Zozulya, S.A., Nikol’skii, N.N., and Petrenko, A.G., Dokl. Biochem. Biophys., 2006, vol. 408, pp. 184–187.

    CAS  PubMed  Google Scholar 

  77. Deyev, I.E., Sohet, F., Vassilenko, K.P., Serova, O.V., Popova, N.V., Zozulya, S.A., Burova, E.B., Houillier, P., Rzhevsky, D.I., Berchatova, A.A., Murashev, A.N., Chugunov, A.O., Efremov, R.G., Nikol’sky, N.N., Bertelli, E., Eladari, D., and Petrenko, A.G., Cell Metab., 2011, vol. 13, pp. 679–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Deyev, I.E., Mitrofanova, A.V., Zhevlenev, E.S., Radionov, N., Berchatova, A.A., Popova, N.V., Serova, O.V., and Petrenko, A.G., J. Biol. Chem., 2013, vol. 288, pp. 33 884–33 893.

    Google Scholar 

  79. Popova, N.V., Deyev, I.E., and Petrenko, A.G., Dokl. Biochem. Biophys., 2013, vol. 450, pp. 160–163.

    CAS  PubMed  Google Scholar 

  80. Deyev, I.E., Popova, N.V., and Petrenko, A.G., Acta Naturae, 2015, vol. 7, pp. 80–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Deyev, I.E., Chachina, N.A., Shayahmetova, D.M., Serova, O.V., and Petrenko, A.G., Biochimie, 2015, vol. 111, pp. 1–9.

    CAS  PubMed  Google Scholar 

  82. Deyev, I.E., Chachina, N.A., Zhevlenev, E.S., and Petrenko, A.G., Int. J. Mol. Sci., 2017, vol. 18, p. E2461.

    PubMed  Google Scholar 

  83. Deyev, I.E., Rzhevsky, D.I., Berchatova, A.A., Serova, O.V., Popova, N.V., Murashev, A.N., and Petrenko, A.G., Acta Naturae, 2011, vol. 3, pp. 114–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weber, A., Huesken, C., Bergmann, E., Kiess, W., Christiansen, N.M., and Christiansen, H., Clin. Cancer. Res., 2003, vol. 9, pp. 5683–5692.

    CAS  PubMed  Google Scholar 

  85. Kirouac, G.J., Neurosci. Biobehav. Rev., 2015, vol. 56, pp. 315–329.

    PubMed  Google Scholar 

  86. Hsu, D.T., Kirouac, G.J., Zubieta, J.K., and Bhatnagar, S., Front. Behav. Neurosci., 2014, vol. 8, p. 73.

    PubMed  PubMed Central  Google Scholar 

  87. Price, C.J., Hoyda, T.D., and Ferguson, A.V., Neuroscientist, 2008, vol. 14, pp. 182–194.

    PubMed  Google Scholar 

  88. Miller, A.D. and Leslie, R.A., Front. Neuroendocrinol., 1994, vol. 15, pp. 301–320.

    CAS  PubMed  Google Scholar 

  89. Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lonnerberg, P., Lou, D., Hjerling-Leffler, J., Haeggstrom, J., Kharchenko, O., Kharchenko, P.V., Kharchenko, P.V., Linnarsson, S., and Ernfors, P., Nat. Neurosci., 2015, vol. 18, pp. 145–153.

    CAS  PubMed  Google Scholar 

  90. Erickson, R.P. and Strnatka, D., Mol. Reprod. Dev., 2011, vol. 78, p. 552.

    CAS  PubMed  Google Scholar 

  91. Ma, L., Merenmies, J., and Parada, L.F., Development, 2000, vol. 127, pp. 3777–3788.

    CAS  PubMed  Google Scholar 

  92. Auer, R.N., Metab. Brain. Dis., 2004, vol. 19, pp. 169–175.

    PubMed  Google Scholar 

  93. Zubkov, E.A., Morozova, A.Yu., Chachina, N.A., Shayakhmetova, D.M., Mozhaev, A.A., Deev, I.E., Chekhonin, V.P., and Petrenko, A.G., Zh. Vyssh. Nervn. Deyat., 2017, vol. 67, pp. 106–112.

    CAS  Google Scholar 

  94. Lemmon, M.A., Exp. Cell Res., 2009, vol. 315, pp. 638–648.

    CAS  PubMed  Google Scholar 

  95. Gebhart, G., Flamen, P., De Vries, E.G., Jhaveri, K., and Wimana, Z., J. Nucl. Med., 2016, vol. 57, Suppl. 1, pp. 81S–88S.

    CAS  PubMed  Google Scholar 

  96. Serova, O.V., Chachina, N.A., Gantsova, E.A., Popova, N.V., Petrenko, A.G., and Deyev, I.E., Int. J. Mol. Sci., 2019, vol. 20, p. E1515.

    PubMed  Google Scholar 

  97. Ozaki, M., Kishigami, S., and Yano, R., Neurosci. Res., 1998, vol. 30, pp. 351–354.

    CAS  PubMed  Google Scholar 

  98. Mizobuchi, S., Kanzaki, H., Omiya, H., Matsuoka, Y., Obata, N., Kaku, R., Nakajima, H., Ouchida, M., and Morita, K., J. Pain. Res., 2013, vol. 6, pp. 87–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Audisio, C., Nicolino, S., Scevola, A., Tos, P., Geuna, S., Battiston, B., and Perroteau, I., Neuroreport, 2008, vol. 19, pp. 1605–1609.

    CAS  PubMed  Google Scholar 

  100. Han, S.B., Kim, H., Lee, H., Grove, M., Smith, G.M., and Son, Y.J., J. Neurosci., 2017, vol. 37, pp. 10 955–10 970.

    Google Scholar 

  101. Trusolino, L., Bertotti, A., and Comoglio, P.M., Nat. Rev. Mol. Cell. Biol., 2010, vol. 11, pp. 834–848.

    CAS  PubMed  Google Scholar 

  102. Serova, O.V., Orsa, A.N., Chachina, N.A., Petrenko, A.G., and Deyev, I.E., J. Recept. Signal Transduct. Res., 2019, vol. 39, pp. 67–72.

    CAS  PubMed  Google Scholar 

  103. Achim, C.L., Katyal, S., Wiley, C.A., Shiratori, M., Wang, G., Oshika, E., Petersen, B.E., Li, J.M., and Michalopoulos, G.K., Brain Res. Dev. Brain Res., 1997, vol. 102, pp. 299–303.

    CAS  PubMed  Google Scholar 

  104. Zheng, L.F., Wang, R., Yu, Q.P., Wang, H., Yi, X.N., Wang, Q.B., Zhang, J.W., Zhang, G.X., and Xu, Y.Z., Neurosignals, 2010, vol. 18, pp. 49–56.

    CAS  PubMed  Google Scholar 

  105. Judson, M.C., Eagleson, K.L., and Levitt, P., J. Neurodev. Disord., 2011, vol. 3, pp. 282–292.

    PubMed  PubMed Central  Google Scholar 

  106. Peng, Y., Huentelman, M., Smith, C., and Qiu, S., Int. Rev. Neurobiol., 2013, vol. 113, pp. 135–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, H.H. and Levitt, P., Dev. Neurosci., 2013, vol. 35, pp. 1–16.

    PubMed  PubMed Central  Google Scholar 

  108. Shimamura, M., Sato, N., Sata, M., Wakayama, K., Ogihara, T., and Morishita, R., Brain Res., 2007, vol. 1151, pp. 188–194.

    CAS  PubMed  Google Scholar 

  109. Reyes, E.P., Cerpa, V., Corvalan, L., and Retamal, M.A., Front Cell. Neurosci., 2014, vol. 8, p. 123.

    PubMed  PubMed Central  Google Scholar 

  110. Giaume, C., Leybaert, L., Naus, C.C., and Saez, J.C., Front. Pharmacol., 2013, vol. 4, p. 88.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Schalper, K.A., Sanchez, H.A., Lee, S.C., Altenberg, G.A., Nathanson, M.H., and Saez, J.C., Am. J. Physiol. Cell. Physiol., 2010, vol. 299, pp. C1504–C1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sanchez, H.A., Bienkowski, R., Slavi, N., Srinivas, M., and Verselis, V.K., J. Biol. Chem., 2014, vol. 289, pp. 21 519–21 532.

    Google Scholar 

  113. Peracchia, C., Biochim. Biophys. Acta, 2004, vol. 1662, pp. 61–80.

    CAS  PubMed  Google Scholar 

  114. Palacios-Prado, N., Sonntag, S., Skeberdis, V.A., Willecke, K., and Bukauskas, F.F., J. Physiol., 2009, vol. 587, pp. 3251–3269.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Palacios-Prado, N., Briggs, S.W., Skeberdis, V.A., Pranevicius, M., Bennett, M.V., and Bukauskas, F.F., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 9897–9902.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Meigh, L., Greenhalgh, S.A., Rodgers, T.L., Cann, M.J., Roper, D.I., and Dale, N., Elife, 2013, vol. 2, e01 213.

    Google Scholar 

  117. Huckstepp, R.T., Bihi, R., Eason, R., Spyer, K.M., Dicke, N., Willecke, K., Marina, N., Gourine, A.V., and Dale, N., J. Physiol., 2010, vol. 588, pp. 3901–3920.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Murayama, T. and Maruyama, I.N., Commun. Integr. Biol., 2013, vol. 6, e26 633.

    Google Scholar 

  119. Potter, L.R., Cell. Signal., 2011, vol. 23, pp. 1921–1926.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Murayama, T. and Maruyama, I.N., J. Neurosci. Res., 2015, vol. 93, pp. 1623–1630.

    CAS  PubMed  Google Scholar 

  121. Levin, L.R. and Buck, J., Annu. Rev. Physiol., 2015, vol. 77, pp. 347–362.

    CAS  PubMed  Google Scholar 

  122. Sinning, A. and Hubner, C.A., FEBS Lett., 2013, vol. 587, pp. 1923–1928.

    CAS  PubMed  Google Scholar 

  123. Rajan, S., Wischmeyer, E., Xin, LiuG., Preisig-Muller, R., Daut, J., Karschin, A., and Derst, C., J. Biol. Chem., 2000, vol. 275, pp. 16 650–16 657.

    Google Scholar 

  124. Cid, L.P., Roa-Rojas, H.A., Niemeyer, M.I., Gonzalez, W., Araki, M., Araki, K., and Sepulveda, F.V., Front. Physiol., 2013, vol. 4, p. 198.

    PubMed  PubMed Central  Google Scholar 

  125. Hughes, B.A., Kumar, G., Yuan, Y., Swaminathan, A., Yan, D., Sharma, A., Plumley, L., Yang-Feng, T.L., and Swaroop, A., Am. J. Physiol. Cell. Physiol., 2000, vol. 279, pp. C771–C784.

    CAS  PubMed  Google Scholar 

  126. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D., Neuron, 1998, vol. 21, pp. 531–543.

    CAS  PubMed  Google Scholar 

  127. Suzuki, M., Mizuno, A., Kodaira, K., and Imai, M., J. Biol. Chem., 2003, vol. 278, pp. 22 664–22 668.

    Google Scholar 

  128. Wildman, S.S., Brown, S.G., Rahman, M., Noel, C.A., Churchill, L., Burnstock, G., Unwin, R.J., and King, B.F., Mol. Pharmacol., 2002, vol. 62, pp. 957–966.

    CAS  PubMed  Google Scholar 

  129. Mounsey, K.E., Dent, J.A., Holt, D.C., McCarthy, J., Currie, B.J., and Walton, S.F., Invert. Neurosci., 2007, vol. 7, pp. 149–156.

    CAS  PubMed  Google Scholar 

  130. Schnizler, K., Saeger, B., Pfeffer, C., Gerbaulet, A., Ebbinghaus-Kintscher, U., Methfessel, C., Franken, E.M., Raming, K., Wetzel, C.H., Saras, A., Pusch, H., Hatt, H., and Gisselmann, G., J. Biol. Chem., 2005, vol. 280, pp. 16 254–16 262.

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research project nos. 19-04-01042, 19-04-00815, 18-04-01369, 17-00-00486, 19-34-90177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Serova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study contains no research using people or animals as objects of study.

Conflict of Interests

The authors declare they have no conflict of interests.

Additional information

Abbreviations: ASIC, acid-sensitive ion channel; RTN, retrotrapezoid nucleus, Kir, Inwardly-rectifying potassium channels; VGCC, voltage-gated calcium channel; NMDAR, N-methyl-D-aspartate receptor; GABA receptor, gamma-aminobutyric acid receptor; IRR, insulin-related receptor; IR, insulin receptor; IGF-IR, insulin-like growth factor I receptor; IGF-I, insulin-like growth factor I; NGF, nerve growth factor.

Corresponding author: e-mail: oxana.serova@gmail.com.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serova, O.V., Gantsova, E.A., Deyev, I.E. et al. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. Russ J Bioorg Chem 46, 506–519 (2020). https://doi.org/10.1134/S1068162020040196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040196

Keywords:

  • acid–base balance
  • pH in the nervous system
  • pH sensors
  • IRR