Skip to main content

Carbonic Anhydrases and Brain pH in the Control of Neuronal Excitability

  • Chapter
  • First Online:
Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

H+ ions are remarkably efficient modulators of neuronal excitability. This renders brain functions highly sensitive to small changes in pH which are generated “extrinsically” via mechanisms that regulate the acid–base status of the whole organism; and “intrinsically”, by activity-induced transmembrane fluxes and de novo generation of acid–base equivalents. The effects of pH changes on neuronal excitability are mediated by diverse, largely synergistically-acting mechanisms operating at the level of voltage- and ligand-gated ion channels and gap junctions. In general, alkaline shifts induce an increase in excitability which is often intense enough to trigger epileptiform activity, while acidosis has the opposite effect. Brain pH changes show a wide variability in their spatiotemporal properties, ranging from long-lasting global shifts to fast and highly localized transients that take place in subcellular microdomains. Thirteen catalytically-active mammalian carbonic anhydrase isoforms have been identified, whereof 11 are expressed in the brain. Distinct CA isoforms which have their catalytic sites within brain cells and the interstitial fluid exert a remarkably strong influence on the dynamics of pH shifts and, consequently, on neuronal functions. In this review, we will discuss the various roles of H+ as an intra- and extracellular signaling factor in the brain, focusing on the effects mediated by CAs. Special attention is paid on the developmental expression patterns and actions of the neuronal isoform, CA VII. Studies on the various functions of CAs will shed light on fundamental mechanisms underlying neuronal development, signaling and plasticity; on pathophysiological mechanisms associated with epilepsy and related diseases; and on the modes of action of CA inhibitors used as CNS-targeting drugs.

Susan C. Frost and Robert McKenna (eds.). Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nattie EE (2001) Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129:257–268

    PubMed  CAS  Google Scholar 

  2. Lee J, Taira T, Pihlaja P, Ransom BR, Kaila K (1996) Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res 706:210–216

    PubMed  CAS  Google Scholar 

  3. Dulla CG, Frenguelli BG, Staley KJ, Masino SA (2009) Intracellular acidification causes adenosine release during states of hyperexcitability in the hippocampus. J Neurophysiol 102:1984–1993

    PubMed  CAS  Google Scholar 

  4. Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823

    PubMed  CAS  Google Scholar 

  5. Tolner EA, Hochman DW, Hassinen P, Otahal J, Gaily E, Haglund MM, Kubova H, Schuchmann S, Vanhatalo S, Kaila K (2011) Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia 52:104–114

    PubMed  Google Scholar 

  6. Guaranha MS, Garzon E, Buchpiguel CA, Tazima S, Yacubian EM, Sakamoto AC (2005) Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring. Epilepsia 46:69–75

    PubMed  Google Scholar 

  7. Schuchmann S, Hauck S, Henning S, Gruters-Kieslich A, Vanhatalo S, Schmitz D, Kaila K (2011) Respiratory alkalosis in children with febrile seizures. Epilepsia 52:1949–1955

    PubMed  Google Scholar 

  8. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, Van’t Hoff W, Al MO, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    PubMed  CAS  Google Scholar 

  9. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl- cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    PubMed  CAS  Google Scholar 

  10. Helmy MM, Tolner EA, Vanhatalo S, Voipio J, Kaila K (2011) Brain alkalosis causes birth asphyxia seizures, suggesting therapeutic strategy. Ann Neurol 69:493–500

    PubMed  Google Scholar 

  11. Helmy MM, Ruusuvuori E, Watkins PV, Voipio J, Kanold PO, Kaila K (2012) Acid extrusion via blood–brain barrier causes brain alkalosis and seizures after neonatal asphyxia. Brain 135:3311–3319

    PubMed  Google Scholar 

  12. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  13. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    PubMed  CAS  Google Scholar 

  14. Ballanyi K, Kaila K (1998) Activity-evoked changes in intracellular pH. In: Kaila K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 291–308

    Google Scholar 

  15. Kaila K, Chesler M (1998) Activity-evoked changes in extracellular pH. In: Kaila K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 309–337

    Google Scholar 

  16. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    PubMed  CAS  Google Scholar 

  17. Tombaugh GC, Somjen GG (1996) Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol 493(Pt 3):719–732

    PubMed  CAS  Google Scholar 

  18. Tombaugh GC, Somjen GG (1997) Differential sensitivity to intracellular pH among high- and low- threshold Ca2+ currents in isolated rat CA1 neurons. J Neurophysiol 77:639–653

    PubMed  CAS  Google Scholar 

  19. Pasternack M, Smirnov S, Kaila K (1996) Proton modulation of functionally distinct GABAA receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35:1279–1288

    PubMed  CAS  Google Scholar 

  20. Wilkins ME, Hosie AM, Smart TG (2005) Proton modulation of recombinant GABA(A) receptors: influence of GABA concentration and the beta subunit TM2-TM3 domain. J Physiol 567:365–377

    PubMed  CAS  Google Scholar 

  21. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350

    PubMed  CAS  Google Scholar 

  22. Makani S, Chen HY, Esquenazi S, Shah GN, Waheed A, Sly WS, Chesler M (2012) NMDA Receptor-dependent afterdepolarizations are curtailed by carbonic anhydrase 14: regulation of a short-term postsynaptic potentiation. J Neurosci 32:16754–16762

    PubMed  CAS  Google Scholar 

  23. Spray DC, Harris AL, Bennet MVL (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    PubMed  CAS  Google Scholar 

  24. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    PubMed  CAS  Google Scholar 

  25. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K + channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    PubMed  CAS  Google Scholar 

  26. Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47:595–781

    PubMed  CAS  Google Scholar 

  27. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    PubMed  CAS  Google Scholar 

  28. Stridh MH, Alt MD, Wittmann S, Heidtmann H, Aggarwal M, Riederer B, Seidler U, Wennemuth G, McKenna R, Deitmer JW, Becker HM (2012) Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J Physiol 590:2333–2351

    PubMed  CAS  Google Scholar 

  29. Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, Roe BA, LeDoux MS, Gu W (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246

    PubMed  CAS  Google Scholar 

  30. Hirasawa M, Xu X, Trask RB, Maddatu TP, Johnson BA, Naggert JK, Nishina PM, Ikeda A (2007) Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci 35:161–170

    PubMed  CAS  Google Scholar 

  31. Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, Al-Sugair A, Nester M, Al-Yamani S, Al-Bakheet A, Al-Hashmi N, Al-Sayed M, Meyer B, Jungbluth H, Al-Owain M (2011) Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet 156B:826–834

    PubMed  Google Scholar 

  32. Shah GN, Ulmasov B, Waheed A, Becker T, Makani S, Svichar N, Chesler M, Sly WS (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci U S A 102:16771–16776

    PubMed  CAS  Google Scholar 

  33. Velisek L, Moshe SL, Xu SG, Cammer W (1993) Reduced susceptibility to seizures in carbonic anhydrase II deficient mutant mice. Epilepsy Res 14:115–121

    PubMed  CAS  Google Scholar 

  34. Ruusuvuori E, Huebner AK, Kirilkin I, Yukin A, Blaesse P, Helmy MM, Kang HJ, Muayed M, Hennings JC, Sestan N, Hubner CA, Kaila K (2013) Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J 32:2275–2286

    Google Scholar 

  35. Kaila K (1994) Ionic basis of GABA(A) receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    PubMed  CAS  Google Scholar 

  36. Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826–828

    PubMed  CAS  Google Scholar 

  37. Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48:73–103

    PubMed  CAS  Google Scholar 

  38. Pappas CA, Ransom BR (1993) A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 9:280–291

    PubMed  CAS  Google Scholar 

  39. Bevensee MO, Cummins TR, Haddad GG, Boron WF, Boyarsky G (1996) pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats. J Physiol 494:315–328

    PubMed  CAS  Google Scholar 

  40. Yao H, Ma E, Gu XQ, Haddad GG (1999) Intracellular pH regulation of CA1 neurons in Na(+)/H(+) isoform 1 mutant mice. J Clin Invest 104:637–645

    PubMed  CAS  Google Scholar 

  41. Schwiening CJ, Kennedy HJ, Thomas RC (1993) Calcium-hydrogen exchange by the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc Biol Sci 253:285–289

    PubMed  CAS  Google Scholar 

  42. Grichtchenko II, Chesler M (1996) Calcium- and barium-dependent extracellular alkaline shifts evoked by electrical activity in rat hippocampal slices. Neuroscience 75:1117–1126

    PubMed  CAS  Google Scholar 

  43. Paalasmaa P, Kaila K (1996) Role of voltage-gated calcium channels in the generation of activity-induced extracellular pH transients in the rat hippocampal slice. J Neurophysiol 75:2354–2360

    PubMed  CAS  Google Scholar 

  44. Burton RF (1978) Intracellular buffering. Respir Physiol 33:51–58

    PubMed  CAS  Google Scholar 

  45. Chesler M, Chen JC, Kraig RP (1994) Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes. J Neurosci Meth 53:129–136

    CAS  Google Scholar 

  46. Tong CK, Chen K, Chesler M (2006) Kinetics of activity-evoked pH transients and extracellular pH buffering in rat hippocampal slices. J Neurophysiol 95:3686–3697

    PubMed  CAS  Google Scholar 

  47. Makani S, Chesler M (2007) Endogenous alkaline transients boost postsynaptic NMDA receptor responses in hippocampal CA1 pyramidal neurons. J Neurosci 27:7438–7446

    PubMed  CAS  Google Scholar 

  48. Huang W, Smith SE, Chesler M (1995) Addition of carbonic anhydrase augments extracellular pH buffering in rat cerebral cortex. J Neurophysiol 74:1806–1809

    PubMed  CAS  Google Scholar 

  49. Svichar N, Waheed A, Sly WS, Hennings JC, Hubner CA, Chesler M (2009) Carbonic anhydrases CA4 and CA14 both enhance AE3-mediated Cl-. J Neurosci 29:3252–3258

    PubMed  CAS  Google Scholar 

  50. Zhu XL, Sly WS (1990) Carbonic anhydrase-IV from human lung-purification, characterization, and camparision with membrane carbonic-anhydrase from human kidney. J Biol Chem 265:8795–8801

    PubMed  CAS  Google Scholar 

  51. Svichar N, Chesler M (2003) Surface carbonic anhydrase activity on astrocytes and neurons facilitates lactate transport. Glia 41:415–419

    PubMed  Google Scholar 

  52. Mori K, Ogawa Y, Ebihara K, Tamura N, Tashiro K, Kuwahara T, Mukoyama M, Sugawara A, Ozaki S, Tanaka I, Nakao K (1999) Isolation and characterization of CA XIV, a novel membrane-bound carbonic anhydrase from mouse kidney. J Biol Chem 274:15701–15705

    PubMed  CAS  Google Scholar 

  53. Parkkila S, Parkkila AK, Rajaniemi H, Shah GN, Grubb JH, Waheed A, Sly WS (2001) Expression of membrane-associated carbonic anhydrase XIV on neurons and axons in mouse and human brain. Proc Natl Acad Sci U S A 98:1918–1923

    PubMed  CAS  Google Scholar 

  54. Tureci O, Sahin U, Vollmar E, Siemer S, Gottert E, Seitz G, Parkkila AK, Shah GN, Grubb JH, Pfreundschuh M, Sly WS (1998) Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci U S A 95:7608–7613

    PubMed  CAS  Google Scholar 

  55. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-lnducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    PubMed  CAS  Google Scholar 

  56. Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastorekova S, Pastorek J, Parkkila SM, Haapasalo HK (2006) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12:473–477

    PubMed  CAS  Google Scholar 

  57. Halmi P, Parkkila S, Honkaniemi J (2006) Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochem Int 48:24–30

    PubMed  CAS  Google Scholar 

  58. Nogradi A, Domoki F, Degi R, Borda S, Pakaski M, Szabo A, Bari F (2003) Up-regulation of cerebral carbonic anhydrase by anoxic stress in piglets. J Neurochem 85:843–850

    PubMed  CAS  Google Scholar 

  59. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    PubMed  CAS  Google Scholar 

  60. Durand GM, Konnerth A (1996) Long-term potentiation as a mechanism of functional synapse induction in the developing hippocampus. J Physiol Paris 90:313–315

    PubMed  CAS  Google Scholar 

  61. Gonzalez-Islas C, Chub N, Wenner P (2009) NKCC1 and AE3 appear to accumulate chloride in embryonic motoneurons. J Neurophysiol 101:507–518

    PubMed  CAS  Google Scholar 

  62. Ridderstråle Y, Wistrand PJ (1998) Carbonic anhydrase isoforms in the mammalian nervous system. In: Kaila K, Ransom B (eds) pH and brain function. Wiley-Liss, New York, pp 21–44

    Google Scholar 

  63. Nogradi A, Mihaly A (1990) Light microscopic histochemistry of the postnatal-development and localization of carbonic anhydrase activity in glial and neuronal cell-types of the rat central nervous system. Histochemistry 94:441–447

    PubMed  CAS  Google Scholar 

  64. Pasternack M, Voipio J, Kaila K (1993) Intracellular carbonic anhydrase activity and its role in GABA- induced acidosis in isolated rat hippocampal pyramidal neurones. Acta Physiol Scand 148:229–231

    PubMed  CAS  Google Scholar 

  65. Lakkis MM, Bergenhem NCH, OShea KS, Tashian RE (1997) Expression of the acatalytic carbonic anhydrase VIII gene, car8, during mouse embryonic development. Histochem J 29:135–141

    PubMed  CAS  Google Scholar 

  66. Nogradi A, Jonsson N, Walker R, Caddy K, Carter N, Kelly C (1997) Carbonic anhydrase II and carbonic anhydrase-related protein in the cerebellar cortex of normal and lurcher mice. Dev Brain Res 98:91–101

    CAS  Google Scholar 

  67. Munsch T, Pape HC (1999) Upregulation of the hyperpolarization-activated cation current in rat thalamic relay neurones by acetazolamide. J Physiol 519(Pt 2):505–514

    PubMed  CAS  Google Scholar 

  68. Wang WG, Bradley SR, Richerson GB (2002) Quantification of the response of rat medullary raphe neurones to independent changes in pH(O) and P-CO2. J Physiol 540:951–970

    PubMed  CAS  Google Scholar 

  69. Willoughby D, Schwiening CJ (2002) Electrically evoked dendritic pH transients in rat cerebellar Purkinje cells. J Physiol-Lond 544:487–499

    PubMed  CAS  Google Scholar 

  70. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707

    PubMed  CAS  Google Scholar 

  71. Spicer SS, Stoward PJ, Tashian RE (1979) The immunohistolocalization of carbonic anhydrase in rodent tissues. J Histochem Cytochem 27:820–831

    PubMed  CAS  Google Scholar 

  72. Innocenti A, Scozzafava A, Parkkila S, Puccetti L, De Simone G, Supuran CT (2008) Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg Med Chem Lett 18:2267–2271

    PubMed  CAS  Google Scholar 

  73. Truppo E, Supuran CT, Sandomenico A, Vullo D, Innocenti A, Di FA, Alterio V, De SG, Monti SM (2012) Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 22:1560–1564

    PubMed  CAS  Google Scholar 

  74. Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445

    PubMed  CAS  Google Scholar 

  75. Sterling D, Reithmeier RAF, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894

    PubMed  CAS  Google Scholar 

  76. Becker HM, Deitmer JW (2007) Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter. J Biol Chem 282:13508–13521

    PubMed  CAS  Google Scholar 

  77. Boron WF (2010) Evaluating the role of carbonic anhydrases in the transport of HCO3–related species. Biochim Biophys Acta 1804:410–421

    PubMed  CAS  Google Scholar 

  78. Viitanen T, Ruusuvuori E, Kaila K, Voipio J (2010) The KCl -cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol 588:1527–1540

    PubMed  CAS  Google Scholar 

  79. Thiry A, Dogne J, Supuran CT, Masereel B (2007) Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 7:855–864

    PubMed  CAS  Google Scholar 

  80. Fedirko N, Svichar N, Chesler M (2006) Fabrication and use of high-speed, concentric H+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording. J Neurophysiol 96:919–924

    PubMed  CAS  Google Scholar 

  81. Kaila K, Ransom BR (1998) pH and brain function. Wiley-Liss, New York

    Google Scholar 

  82. Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165

    PubMed  CAS  Google Scholar 

  83. Paalasmaa P, Taira T, Voipio J, Kaila K (1994) Extracellular alkaline transients mediated by glutamate receptors in the rat hippocampal slice are not due to a proton conductance. J Neurophysiol 72:2031–2033

    PubMed  CAS  Google Scholar 

  84. Trapp S, Luckermann M, Kaila K, Ballanyi K (1996) Acidosis of hippocampal neurones mediated by a plasmalemmal Ca2+/H+ pump. Neuroreport 7:2000–2004

    PubMed  CAS  Google Scholar 

  85. Luckermann M, Trapp S, Ballanyi K (1997) GABA- and glycine-mediated fall of intracellular pH in rat medullary neurons in situ. J Neurophysiol 77:1844–1852

    PubMed  CAS  Google Scholar 

  86. Zhan RZ, Fujiwara N, Tanaka E, Shimoji K (1998) Intracellular acidification induced by membrane depolarization in rat hippocampal slices: roles of intracellular Ca2+ and glycolysis. Brain Res 780:86–89

    PubMed  CAS  Google Scholar 

  87. Kaila K, Saarikoski J, Voipio J (1990) Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J Physiol 427:241–260

    PubMed  CAS  Google Scholar 

  88. Voipio J, Paalasmaa P, Taira T, Kaila K (1995) Pharmacological characterization of extracellular pH transients evoked by selective synaptic and exogenous activation of AMPA, NMDA, and GABAA receptors in the rat hippocampal slice. J Neurophysiol 74:633–642

    PubMed  CAS  Google Scholar 

  89. Chen JC, Chesler M (1992) Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices. J Neurophysiol 67:29–36

    PubMed  CAS  Google Scholar 

  90. Kaila K, Paalasmaa P, Taira T, Voipio J (1992) pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. Neuroreport 3:105–108

    PubMed  CAS  Google Scholar 

  91. Taira T, Paalasmaa P, Voipio J, Kaila K (1995) Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. J Neurophysiol 74:643–649

    PubMed  CAS  Google Scholar 

  92. Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268:873–876

    PubMed  CAS  Google Scholar 

  93. Krishek BJ, Amato A, Connolly CN, Moss SJ, Smart TG (1996) Proton sensitivity of the GABA(A) receptor is associated with the receptor subunit composition. J Physiol 492:431–443

    PubMed  CAS  Google Scholar 

  94. Tang CM, Dichter M, Morad M (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A 87:6445–6449

    PubMed  CAS  Google Scholar 

  95. Vyklicky LJ, Vlachov V, Krusek J (1990) The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J Physiol 430:497–517

    PubMed  CAS  Google Scholar 

  96. Taira T, Smirnov S, Voipio J, Kaila K (1993) Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. Neuroreport 4:93–96

    PubMed  CAS  Google Scholar 

  97. Gottfried JA, Chesler M (1994) Endogenous H + modulation of NMDA receptor-mediated EPSCs revealed by carbonic anhydrase inhibition in rat hippocampus. J Physiol 478(Pt 3):373–378

    PubMed  CAS  Google Scholar 

  98. Dietrich CJ, Morad M (2010) Synaptic acidification enhances GABAA signaling. J Neurosci 30:16044–16052

    PubMed  CAS  Google Scholar 

  99. Pappas CA, Ransom BR (1994) Depolarization-induced alkalinization (DIA) in rat hippocampal astrocytes. J Neurophysiol 72:2816–2826

    PubMed  CAS  Google Scholar 

  100. Voipio J (1998) Diffusion and buffering aspects of H+, HCO3-, and CO2 movements in brain tissue. In: Kaila K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 45–66

    Google Scholar 

  101. de Curtis M, Manfridi A, Biella G (1998) Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J Neurosci 18:7543–7551

    PubMed  Google Scholar 

  102. Pavlov I, Kaila K, Kullmann DM, Miles R (2013) Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? J Physiol 591:765–774

    PubMed  CAS  Google Scholar 

  103. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABAA receptor signalling. Prog Brain Res 160:59–87

    PubMed  CAS  Google Scholar 

  104. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    PubMed  CAS  Google Scholar 

  105. Qian N, Sejnowski TJ (1990) When is an inhibitory synapse effective? Proc Natl Acad Sci U S A 87:8145–8149

    PubMed  CAS  Google Scholar 

  106. Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABA(A) receptors. Science 269:977–981

    PubMed  CAS  Google Scholar 

  107. Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J (1997) Long-lasting GABA-mediated depolarization evoked by high- frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672

    PubMed  CAS  Google Scholar 

  108. Alger BE, Nicoll RA (1982) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105–123

    PubMed  CAS  Google Scholar 

  109. Alger BE, Nicoll RA (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141

    PubMed  CAS  Google Scholar 

  110. Grover LM, Lambert NA, Schwartzkroin PA, Teyler TJ (1993) Role of HCO3- ions in depolarizing GABAA receptor-mediated responses in pyramidal cells of rat hippocampus. J Neurophysiol 69:1541–1555

    PubMed  CAS  Google Scholar 

  111. Smirnov S, Paalasmaa P, Uusisaari M, Voipio J, Kaila K (1999) Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J Neurosci 19:9252–9260

    PubMed  CAS  Google Scholar 

  112. Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235

    PubMed  CAS  Google Scholar 

  113. Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28:4635–4639

    PubMed  CAS  Google Scholar 

  114. Stasheff SF, Mott DD, Wilson WA (1993) Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. J Neurophysiol 70:976–984

    PubMed  CAS  Google Scholar 

  115. Berg AT, Shinnar S (1996) Complex febrile seizures. Epilepsia 37:126–133

    PubMed  CAS  Google Scholar 

  116. Stafstrom CE (2002) The incidence and prevalence of febrile seizures. In: Baram TZ, Shinnar S (eds) Febrile seizures. Academic, San Diego, pp 1–25

    Google Scholar 

  117. Fedirko N, Avshalumov M, Rice ME, Chesler M (2007) Regulation of postsynaptic Ca2+ influx in hippocampal CA1 pyramidal neurons via extracellular carbonic anhydrase. J Neurosci 27:1167–1175

    PubMed  CAS  Google Scholar 

  118. Orlowski P, Chappell M, Park CS, Grau V, Payne S (2011) Modelling of pH dynamics in brain cells after stroke. Interface Focus 1:408–416

    PubMed  Google Scholar 

  119. Asiedu M, Ossipov MH, Kaila K, Price TJ (2010) Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain 148:302–308

    PubMed  CAS  Google Scholar 

  120. Caldwell L, Harries P, Sydlik S, Schwiening CJ (2012) Presynaptic pH and vesicle fusion in Drosophila larvae neurones. Synapse 67:729–740

    Google Scholar 

  121. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3- transporters. Pflugers Arch 447:495–509

    PubMed  CAS  Google Scholar 

  122. Ferrini F, Trang T, Mattioli TA, Laffray S, Del'Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill CM, Salter MW, de KY (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis. Nat Neurosci 16:183–192

    Google Scholar 

Download references

Acknowledgments

The authors’ original research work has been supported by the Academy of Finland, the Sigrid Jusélius Foundation, the Jane and Aatos Erkko Foundation, and the Letten Foundation. We thank Prof. Juha Voipio for discussions and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruusuvuori, E., Kaila, K. (2014). Carbonic Anhydrases and Brain pH in the Control of Neuronal Excitability. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_14

Download citation

Publish with us

Policies and ethics