Skip to main content
Log in

Investigation of the Internalization of Fluorescently Labeled Lipophilic siRNA into Cultured Tumor Cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The attachment of lipophilic molecules of natural origin, which have natural means for cell internalization, to small interfering RNA (siRNA) is an effective way of delivering siRNA to cells for biomedical purposes in vitro and in vivo. Earlier, we showed that the attachment of cholesterol to the 5'-end of the sense strand of nuclease-resistant siRNA through the optimized linker allows it to penetrate the cells and suppress the expression of the target gene. However, the effectiveness of the conjugates is different for cells of different origin, and in hematopoietic cells, they are not active, despite effective accumulation. In this work, we investigated the accumulation of fluorescently labeled cholesterol conjugates of siRNA using endocytosis inhibitors and showed that fluorescently labeled 5'-cholesterol conjugate of siRNAs penetrate KB-3-1 and K562 cells in several ways whose contribution differs depending on cell type and the presence of serum. In a serum-free medium, it was found that macropinocytosis and clathrin-dependent endocytosis contribute to the accumulation of the conjugate in KB-3-1 cells, while clathrin-dependent endocytosis makes the main contribution in K562 cells, while inhibitors of different types of endocytosis do not reduce the biological activity of the conjugate without a fluorescent label.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., Nature, 1998, vol. 391, pp. 806–811.

    Article  CAS  Google Scholar 

  2. Chernikov, I.V., Vlassov, V.V., and Chernolovskaya, E.L., Front. Pharmacol., 2019, vol. 10, p. 444.

    Article  CAS  Google Scholar 

  3. Kanasty, R.L., Whitehead, K.A., Vegas, A.J., and Anderson, D.G., Mol. Ther.: J. Am. Soc. Gene Ther., 2012, vol. 20, pp. 513–524.

    Article  CAS  Google Scholar 

  4. Zatsepin, T.S., Kotelevtsev, Y.V., and Koteliansky, V., Int. J. Nanomed., 2016, vol. 11, pp. 3077–3086.

    Article  CAS  Google Scholar 

  5. Lorenz, C., Hadwiger, P., John, M., Vornlocher, H.P., and Unverzagt, C., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 4975–4977.

    Article  CAS  Google Scholar 

  6. Nishina, K., Unno, T., Uno, Y., Kubodera, T., Kanouchi, T., Mizusawa, H., and Yokota, T., Mol. Ther.: J. Am. Soc. Gene Ther., 2008, vol. 16, pp. 734–740.

    Article  CAS  Google Scholar 

  7. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., et al., Nature, 2004, vol. 432, pp. 173–178.

    Article  CAS  Google Scholar 

  8. Wolfrum, C., Shi, S., Jayaprakash, K.N., Jayaraman, M., Wang, G., Pandey, R.K., Rajeev, K.G., Nakayama, T., Charrise, K., Ndungo, E.M., Zimmermann, T., Koteliansky, V., Manoharan, M., and Stoffel, M., Nat. Biotechnol., 2007, vol. 25, pp. 1149–1157.

    Article  CAS  Google Scholar 

  9. Raouane, M., Desmaele, D., Urbinati, G., Massaad-Massade, L., and Couvreur, P., Bioconjugate Chem., 2012, vol. 23, pp. 1091–1104.

    Article  CAS  Google Scholar 

  10. Dassie, J.P., Liu, X.Y., Thomas, G.S., Whitaker, R.M., Thiel, K.W., Stockdale, K.R., Meyerholz, D.K., McCaffrey, A.P., McNamara, J.O., 2nd, and Giangrande, P.H., Nat. Biotechnol., 2009, vol. 27, pp. 839–849.

    Article  CAS  Google Scholar 

  11. Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A., and Lieberman, J., Nat. Biotechnol., 2005, vol. 23, pp. 709–717.

    Article  CAS  Google Scholar 

  12. Xia, C.F., Boado, R.J., and Pardridge, W.M., Mol. Pharm., 2009, vol. 6, pp. 747–751.

    Article  CAS  Google Scholar 

  13. Cuellar, T.L., Barnes, D., Nelson, C., Tanguay, J., Yu, S.F., Wen, X., Scales, S.J., Gesch, J., Davis, D., van Brabant, SmithA., Leake, D., Vandlen, R., and Siebel, C.W., Nucleic Acids Res., 2014, vol. 43, pp. 1189–1203.

    Article  Google Scholar 

  14. Hu, J., Xiao, F., Hao, X., Bai, S., and Hao, J., Mol. Ther. Nucleic Acids, 2014, vol. 3. e209.

    Article  CAS  Google Scholar 

  15. Thomas, M., Kularatne, S.A., Qi, L., Kleindl, P., Leamon, C.P., Hansen, M.J., and Low, P.S., Ann. N.Y. Acad. Sci., 2009, vol. 1175, pp. 32–39.

    Article  CAS  Google Scholar 

  16. Nair, J.K., Willoughby, J.L., Chan, A., Charisse, K., Alam, M.R., Wang, Q., Hoekstra, M., Kandasamy, P., Kel’in, A.V., Milstein, S., Taneja, N., O’Shea, J., Shaikh, S., Zhang, L., van der Sluis, R.J., et al., J. Am. Chem. Soc., 2014, vol. 136, pp. 16 958–16 961.

    Article  Google Scholar 

  17. Cesarone, G., Edupuganti, O.P., Chen, C.P., and Wickstrom, E., Bioconjugate Chem., 2007, vol. 18, pp. 1831–1840.

    Article  CAS  Google Scholar 

  18. Koehn, S., Schaefer, H.W., Ludwig, M., Haag, N., Schubert, U.S., Seyfarth, L., Imhof, D., Markert, U.R., and Poehlmann, T.G., J. RNAi Gene Silencing, 2010, vol. 6, pp. 422–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Arthanari, Y., Pluen, A., Rajendran, R., Aojula, H., and Demonacos, C., J. Contr. Release, 2010, vol. 145, pp. 272–280.

    Article  CAS  Google Scholar 

  20. Brunzell, J.D., Davidson, M., Furberg, C.D., Goldberg, R.B., Howard, B.V., Stein, J.H., and Witztum, J.L., Diabetes Care, 2008, vol. 31, pp. 811–822.

    Article  CAS  Google Scholar 

  21. Brown, M.S. and Goldstein, J.L., Cell, 1997, vol. 89, pp. 331–340.

    Article  CAS  Google Scholar 

  22. Kruglova, I.S., Meshchaninova, M.I., Ven’iaminova, A.G., Zenkova, M.A., Vlasov, V.V., and Chernolovskaia, E.L., Mol. Biol. (Moscow), 2010, vol. 44, pp. 284–293.

    Article  CAS  Google Scholar 

  23. Petrova, N.S., Chernikov, I.V., Meschaninova, M.I., Dovydenko, I.S., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Nucleic Acids Res., 2012, vol. 40, pp. 2330–2344.

    Article  CAS  Google Scholar 

  24. Chernikov, I.V., Gladkikh, D.V., Meschaninova, M.I., Ven’yaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Mol. Ther. Nucleic Acids, 2017, vol. 6, pp. 209–220.

    Article  CAS  Google Scholar 

  25. Chernikov, I., Meschaninova, M., Venyaminova, A., Zenkova, M., Vlassov, V., and Chernolovskaya, E., J. Hematol. Oncol. Res., 2016, vol. 2, p. 13.

    Article  Google Scholar 

  26. Chernikov, I.V., Gladkikh, D.V., Meschaninova, M.I., Karelina, U.A., Ven’yaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Nucleic Acid Ther., 2019, vol. 29, pp. 33–43.

    Article  CAS  Google Scholar 

  27. Volkov, A.A., Kruglova, N.S., Meschaninova, M.I., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Oligonucleotides, 2009, vol. 19, pp. 191–202.

    Article  CAS  Google Scholar 

  28. Kotula, J.W., Pratico, E.D., Ming, X., Nakagawa, O., Juliano, R.L., and Sullenger, B.A., Nucleic Acid Ther., 2012, vol. 22, pp. 187–195.

    Article  CAS  Google Scholar 

  29. Ivanov, A.I., Methods Mol. Biol., 2008, vol. 440, pp. 15–33.

    Article  CAS  Google Scholar 

  30. Ly, S., Navaroli, D.M., Didiot, M.C., Cardia, J., Pandarinathan, L., Alterman, J.F., Fogarty, K., Standley, C., Lifshitz, L.M., Bellve, K.D., Prot, M., Echeverria, D., Corvera, S., and Khvorova, A., Nucleic Acids Res., 2017, vol. 45, pp. 15–25.

  31. Alam, M.R., Ming, X., Dixit, V., Fisher, M., Chen, X., and Juliano, R.L., Oligonucleotides, 2010, vol. 20, pp. 103–109.

    Article  CAS  Google Scholar 

  32. Osborn, M.F., Alterman, J.F., Nikan, M., Cao, H., Didiot, M.C., Hassler, M.R., Coles, A.H., and Khvorova, A., Nucleic Acids Res., 2015, vol. 43, pp. 8664–8672.

  33. Gilleron, J., Paramasivam, P., Zeigerer, A., Querbes, W., Marsico, G., Andree, C., Seifert, S., Amaya, P., Stoter, M., Koteliansky, V., Waldmann, H., Fitzgerald, K., Kalaidzidis, Y., Akinc, A., Maier, M.A., et al., Nucleic Acids Res., 2015, vol. 43, pp. 7984–8001.

    Article  CAS  Google Scholar 

  34. Crooke, S.T., Wang, S., Vickers, T.A., Shen, W., and Liang, X.H., Nat. Biotechnol., 2017, vol. 35, pp. 230–237.

    Article  CAS  Google Scholar 

  35. Wang, S., Allen, N., Vickers, T.A., Revenko, A.S., Sun, H., Liang, X.H., and Crooke, S.T., Nucleic Acids Res., 2018, vol. 46, pp. 3579–3594.

  36. Chen, Y.H., Lin, W.W., Liu, C.S., Hsu, L.S., Lin, Y.M., and Su, S.L., PLoS One, 2014, vol. 9. e71862.

    Article  Google Scholar 

  37. Shukla, R.S., Jain, A., Zhao, Z., and Cheng, K., Nanomedicine, 2016, vol. 12, pp. 1323–1334.

    Article  CAS  Google Scholar 

  38. Bartlett, D.W. and Davis, M.E., Nucleic Acids Res., 2006, vol. 34, pp. 322–333.

    Article  CAS  Google Scholar 

  39. Bellon, L., Curr. Protoc. Nucleic Acid Chem., 2001. https://doi.org/10.1002/0471142700.nc0306s01

Download references

ACKNOWLEDGMENTS

The authors would like to thank A.V. Vladimirova for cell maintenance.

This work was supported by the Russian Foundation for Basic Research grant no. 17-04-01100 and the Russian State-Funded Budget Project 2013–2020 AAAA-A17-117020210024-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Chernolovskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans and animals as research objects.

Conflict of Interests

Authors declare no conflict of interest.

Additional information

Translated by P. Vikhreva

Abbreviations: siRNA, small-interfering RNA; MDC, monodansylcadaverine; EIPA, 5-(N-Ethyl-N-isopropyl)amiloride; CDE, clathrin-dependent endocytosis; LR, lipid rafts; MPC, macropinocytosis; Nm, 2'-O-methyl nucleotide analog; PBS, phosphate buffered saline; FBS, Fetal bovine serum; RISC, RNA-induced silencing complex; RFU, relative fluorescence units; ASO, antisense oligonucleotide, PMT, photomultiplier tube.

Corresponding author: phone: +7 (383) 363-51-61; e-mail: elena_ch@niboch.nsc.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernikov, I.V., Karelina, U.A., Meschaninova, M.I. et al. Investigation of the Internalization of Fluorescently Labeled Lipophilic siRNA into Cultured Tumor Cells. Russ J Bioorg Chem 45, 766–773 (2019). https://doi.org/10.1134/S1068162019060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019060128

Keywords:

Navigation